Abstract
We consider finite difference approximations to systems of polynomially-nonlinear partial differential equations the coefficients of which are rational functions over rationals in the independent variables. The notion of strong consistency which we introduced earlier for linear systems is extended to nonlinear ones. For orthogonal and uniform grids we describe an algorithmic procedure for the verification of the strong consistency based on the computation of difference standard bases. The concepts and algorithmic methods of the present paper are illustrated by two finite difference approximations to the two-dimensional Navier-Stokes equations. One of these approximations is strongly consistent, while the other is not.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bächler, T., Gerdt, V.P., Lange-Hegermann, M., Robertz, D.: Thomas Decomposition of Algebraic and Differential Systems. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2010. LNCS, vol. 6244, pp. 31–54. Springer, Heidelberg (2010)
Becker, T., Weispfenning, V.: Gröbner Bases: A Computational Approach to Commutative Algebra. Graduate Texts in Mathematics, vol. 141. Springer, New York (1993)
Blinkov, Y.A., Cid, C.F., Gerdt, V.P., Plesken, W., Robertz, D.: The MAPLE Package Janet: II. Linear Partial Differential Equations. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) Proceedings of the 6th International Workshop on Computer Algebra in Scientific Computing, pp. 41–54. Technische Universität München (2003), http://wwwb.math.rwth-aachen.de/Janet
Cox, D., Little, J., O’Shie, D.: Ideals, Varieties and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, 3rd edn. Springer, New York (2007)
Dorodnitsyn, V.: The Group Properties of Difference Equations. Moscow, Fizmatlit (2001) (in Russian)
Gerdt, V.P.: Completion of Linear Differential Systems to Involution. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 1999. Computer Algebra in Scientific Computing / CASC 1999, pp. 115–137. Springer, Berlin (1999) arXiv:math.AP/9909114
Gerdt, V.P.: Involutive Algorithms for Computing Gröbner Bases. In: Cojocaru, S., Pfister, G., Ufnarovsky, V. (eds.) Computational Commutative and Non-Commutative Algebraic Geometry, pp. 199–225. IOS Press, Amsterdam (2005) arXiv:math.AC/0501111
Gerdt, V.P.: On Decomposition of Algebraic PDE Systems into Simple Subsystems. Acta Appl. Math. 101, 39–51 (2008)
Gerdt, V.P., Blinkov, Y.A.: Involutive Bases of Polynomial Ideals. Math. Comput. Simulat. 45, 519–542 (1998) arXiv:math.AC/9912027
Gerdt, V.P., Blinkov, Y.A.: Involution and Difference Schemes for the Navier–Stokes Equations. In: Gerdt, V.P., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2009. LNCS, vol. 5743, pp. 94–105. Springer, Heidelberg (2009)
Gerdt, V.P., Blinkov, Y.A., Mozzhilkin, V.V.: Gröbner Bases and Generation of Difference Schemes for Partial Differential Equations. SIGMA 2, 051 (2006) arXiv:math.RA/0605334
Gerdt, V.P., Robertz, D.: A Maple Package for Computing Gröbner Bases for Linear Recurrence Relations. Nucl. Instrum. Methods 559(1), 215–219 (2006) arXiv:cs.SC/0509070, http://wwwb.math.rwth-aachen.de/Janet
Gerdt, V.P., Robertz, D.: Consistency of Finite Difference Approximations for Linear PDE Systems and its Algorithmic Verification. In: Watt, S.M. (ed.) Proceedings of ISSAC 2010, pp. 53–59. Association for Computing Machinery (2010)
Hubert, E.: Notes on Triangular Sets and Triangulation-Decomposition Algorithms II: Differential Systems. In: Winkler, F., Langer, U. (eds.) SNSC 2001. LNCS, vol. 2630, pp. 40–87. Springer, Heidelberg (2003)
Gresho, P.M., Sani, R.L.: On Pressure Boundary Conditions for the Incompressible Navier-Stokes Equations. Int. J. Numer. Meth. Fl. 7, 1111–1145 (1987)
Janet, M.: Leçons sur les Systèmes d’Equations aux Dérivées Partielles. Cahiers Scientifiques, IV. Gauthier-Villars, Paris (1929)
Kim, J., Moin, P.: Application of a Fractional-Step Method To Imcompressible Navier-Stokes Equations. J. Comput. Phys. 59, 308–323 (1985)
La Scala, R., Levandovskyy, V.: Skew Polynomila Rings, Gröbner Bases and The Letterplace Embedding of the Free Associative Algebra, arXiv:math.RA/0230289
Levin, A.: Difference Algebra. Algebra and Applications, vol. 8. Springer, Heidelberg (2008)
Martin, B., Levandovskyy, V.: Symbolic Approach to Generation and Analysis of Finite Difference Schemes of Partial Differential Equations. In: Langer, U., Paule, P. (eds.) Numerical and Symbolic Scientific Computing: Progress and Prospects, pp. 123–156. Springer, Wien (2012)
Ollivier, F.: Standard Bases of Differential Ideals. In: Sakata, S. (ed.) AAECC 1990. LNCS, vol. 508, pp. 304–321. Springer, Heidelberg (1991)
Pozrikidis, C.: Fluid Dynamics: Theory, Computation and Numerical Simulation. Kluwer, Amsterdam (2001)
Rosinger, E.E.: Nonlinear Equivalence, Reduction of PDEs to ODEs and Fast Convergent Numerical Methods. Pitman, London (1983)
Samarskii, A.A.: Theory of Difference Schemes. Marcel Dekker, New York (2001)
Seiler, W.M.: Involution: The Formal Theory of Differential Equations and its Applications in Computer Algebra. In: Algorithms and Computation in Mathematics, vol. 24. Springer, Heidelberg (2010)
Strikwerda, J.C.: Finite Difference Schemes and Partial Differential Equations, 2nd edn. SIAM, Philadelphia (2004)
Thomas, J.M.: Differential Systems. AMS Colloquium Publications XX1 (1937); Systems and Roots. The Wylliam Byrd Press, Rychmond, Virginia (1962)
Thomas, J.W.: Numerical Partial Differential Equations: Finite Difference Methods, 2nd edn. Springer, New York (1998)
Thomas, J.W.: Numerical Partial Differential Equations: Conservation Laws and Elliptic Equations. Springer, New York (1999)
Trushin, D.V.: Difference Nullstellensatz, arXiv:math.AC/0908.3865
Zobnin, A.: Admissible Orderings and Finiteness Criteria for Differential Standard Bases. In: Kauers, M. (ed.) Proceedings of ISSAC 2005, pp. 365–372. Association for Computing Machinery (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Gerdt, V.P. (2012). Consistency Analysis of Finite Difference Approximations to PDE Systems. In: Adam, G., Buša, J., Hnatič, M. (eds) Mathematical Modeling and Computational Science. MMCP 2011. Lecture Notes in Computer Science, vol 7125. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28212-6_3
Download citation
DOI: https://doi.org/10.1007/978-3-642-28212-6_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-28211-9
Online ISBN: 978-3-642-28212-6
eBook Packages: Computer ScienceComputer Science (R0)