Abstract
The proof system \(\forall \text {-Exp+Res}\) formally captures expansion-based solving of quantified Boolean formulas (QBFs) whereas the \(\mathsf {QRAT}\) proof system captures QBF preprocessing. From previous work it is known that certain families of formulas have short proofs in \(\mathsf {QRAT}\) but not in \(\forall \text {-Exp+Res}\). However, it was not known if the two proof systems were incomparable (i.e., if there also existed QBFs with short \(\forall \text {-Exp+Res}\) proofs but without short \(\mathsf {QRAT}\) proofs), or if \(\mathsf {QRAT}\) polynomially simulates \(\forall \text {-Exp+Res}\). We close this gap of the QBF-proof-complexity landscape by presenting a polynomial simulation of \(\forall \text {-Exp+Res}\) in \(\mathsf {QRAT}\). Our simulation shows how definition introduction combined with extended-universal reduction can mimic the concept of universal expansion.
This work has been supported by the Austrian Science Fund (FWF) projects W1255-N23 and S11408-N23 and the LIT AI Lab funded by the State of Upper Austria.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Balabanov, V., Jiang, J.R.: Unified QBF certification and its applications. Formal Methods Syst. Des. 41(1), 45–65 (2012)
Balabanov, V., Widl, M., Jiang, J.-H.R.: QBF resolution systems and their proof complexities. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 154–169. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09284-3_12
Beyersdorff, O., Bonacina, I., Chew, L.: Lower bounds: from circuits to QBF proof systems. In: Proceedings of the 2016 ACM Conference on Innovations in Theoretical Computer Science (ITCS 2016), pp. 249–260. ACM (2016)
Beyersdorff, O., Chew, L., Janota, M.: On unification of QBF resolution-based calculi. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014. LNCS, vol. 8635, pp. 81–93. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44465-8_8
Beyersdorff, O., Chew, L., Janota, M.: Proof complexity of resolution-based QBF calculi. In: Proceedings of the 32nd International Symposium on Theoretical Aspects of Computer Science (STACS 2015). LIPIcs, vol. 30, pp. 76–89. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2015)
Beyersdorff, O., Chew, L., Mahajan, M., Shukla, A.: Are short proofs narrow? QBF resolution is not simple. In: Proceedings of the 33rd Symposium on Theoretical Aspects of Computer Science (STACS 2016). LIPIcs, vol. 47, pp. 15:1–15:14. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2016)
Bloem, R., Braud-Santoni, N., Hadzic, V., Egly, U., Lonsing, F., Seidl, M.: Expansion-based QBF solving without recursion. In: Proceedings of the International Conference on Formal Methods in Computer Aided Design (FMCAD 2018), pp. 1–10. IEEE (2018)
Chen, H.: Proof complexity modulo the polynomial hierarchy: understanding alternation as a source of hardness. In: Proceedings of the 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016). LIPIcs, vol. 55, pp. 94:1–94:14. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2016)
Cook, S.A., Reckhow, R.A.: The relative efficiency of propositional proof systems. J. Symb. Logic 44(1), 36–50 (1979)
Egly, U.: On stronger calculi for QBFs. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 419–434. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40970-2_26
Gelder, A.: Variable independence and resolution paths for quantified boolean formulas. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 789–803. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23786-7_59
Heule, M.J.H., Seidl, M., Biere, A.: Solution validation and extraction for QBF preprocessing. J. Autom. Reasoning 58(1), 1–29 (2016)
Janota, M.: On Q-resolution and CDCL QBF solving. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 402–418. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40970-2_25
Janota, M., Grigore, R., Marques-Silva, J.: On QBF proofs and preprocessing. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR 2013. LNCS, vol. 8312, pp. 473–489. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-45221-5_32
Janota, M., Klieber, W., Marques-Silva, J., Clarke, E.M.: Solving QBF with counterexample guided refinement. Artif. Intell. 234, 1–25 (2016)
Janota, M., Marques-Silva, J.: On propositional QBF expansions and Q-resolution. In: Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 67–82. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39071-5_7
Jussila, T., Biere, A., Sinz, C., Kröning, D., Wintersteiger, C.M.: A first step towards a unified proof checker for QBF. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 201–214. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72788-0_21
Kiesl, B., Heule, M.J.H., Seidl, M.: A little blocked literal goes a long way. In: Gaspers, S., Walsh, T. (eds.) SAT 2017. LNCS, vol. 10491, pp. 281–297. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66263-3_18
Kiesl, B., Rebola-Pardo, A., Heule, M.J.H.: Extended resolution simulates DRAT. In: Galmiche, D., Schulz, S., Sebastiani, R. (eds.) IJCAR 2018. LNCS (LNAI), vol. 10900, pp. 516–531. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94205-6_34
Kleine Büning, H., Karpinski, M., Flögel, A.: Resolution for quantified boolean formulas. Inf. Comput. 117(1), 12–18 (1995)
Lonsing, F., Egly, U.: DepQBF 6.0: a search-based QBF solver beyond traditional QCDCL. In: de Moura, L. (ed.) CADE 2017. LNCS (LNAI), vol. 10395, pp. 371–384. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63046-5_23
Peitl, T., Slivovsky, F., Szeider, S.: Dependency learning for QBF. In: Gaspers, S., Walsh, T. (eds.) SAT 2017. LNCS, vol. 10491, pp. 298–313. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66263-3_19
Slivovsky, F., Szeider, S.: Variable dependencies and Q-resolution. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 269–284. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09284-3_21
Slivovsky, F., Szeider, S.: Soundness of Q-resolution with dependency schemes. Theor. Comput. Sci. 612, 83–101 (2016)
Tentrup, L.: On expansion and resolution in CEGAR based QBF solving. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10427, pp. 475–494. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63390-9_25
Gelder, A.: Contributions to the theory of practical quantified boolean formula solving. In: Milano, M. (ed.) CP 2012. LNCS, pp. 647–663. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33558-7_47
Wetzler, N., Heule, M.J.H., Hunt, W.A.: DRAT-trim: efficient checking and trimming using expressive clausal proofs. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 422–429. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09284-3_31
Zhang, L., Malik, S.: Conflict driven learning in a quantified boolean satisfiability solver. In: Proceedings of the 2002 IEEE/ACM International Conference on Computer-aided Design (ICCAD 2002), pp. 442–449. ACM/IEEE Computer Society (2002)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Kiesl, B., Seidl, M. (2019). QRAT Polynomially Simulates \(\forall \text {-Exp+Res}\). In: Janota, M., Lynce, I. (eds) Theory and Applications of Satisfiability Testing – SAT 2019. SAT 2019. Lecture Notes in Computer Science(), vol 11628. Springer, Cham. https://doi.org/10.1007/978-3-030-24258-9_13
Download citation
DOI: https://doi.org/10.1007/978-3-030-24258-9_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-24257-2
Online ISBN: 978-3-030-24258-9
eBook Packages: Computer ScienceComputer Science (R0)