Abstract
Several calculi for quantified Boolean formulas (QBFs) exist, but relations between them are not yet fully understood. This paper defines a novel calculus, which is resolution-based and enables unification of the principal existing resolution-based QBF calculi, namely Q-resolution, long-distance Q-resolution and the expansion-based calculus ∀Exp+Res. All these calculi play an important role in QBF solving. This paper shows simulation results for the new calculus and some of its variants. Further, we demonstrate how to obtain winning strategies for the universal player from proofs in the calculus. We believe that this new proof system provides an underpinning necessary for formal analysis of modern QBF solvers.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Balabanov, V., Jiang, J.H.R.: Unified QBF certification and its applications. Formal Methods in System Design 41(1), 45–65 (2012)
Beame, P., Kautz, H.A., Sabharwal, A.: Towards understanding and harnessing the potential of clause learning. J. Artif. Intell. Res. (JAIR) 22, 319–351 (2004)
Benedetti, M.: Evaluating QBFs via symbolic Skolemization. In: Baader, F., Voronkov, A. (eds.) LPAR 2004. LNCS (LNAI), vol. 3452, pp. 285–300. Springer, Heidelberg (2005)
Benedetti, M., Mangassarian, H.: QBF-based formal verification: Experience and perspectives. JSAT 5(1-4), 133–191 (2008)
Biere, A.: Resolve and expand. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 59–70. Springer, Heidelberg (2005)
Buss, S.R.: Towards NP-P via proof complexity and search. Ann. Pure Appl. Logic 163(7), 906–917 (2012)
Buss, S.R., Hoffmann, J., Johannsen, J.: Resolution trees with lemmas: Resolution refinements that characterize DLL algorithms with clause learning. Logical Methods in Computer Science 4(4) (2008)
Cook, S.A., Reckhow, R.A.: The relative efficiency of propositional proof systems. J. Symb. Log. 44(1), 36–50 (1979)
Egly, U.: On sequent systems and resolution for QBFs. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 100–113. Springer, Heidelberg (2012)
Egly, U., Lonsing, F., Widl, M.: Long-distance resolution: Proof generation and strategy extraction in search-based QBF solving. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR-19 2013. LNCS, vol. 8312, pp. 291–308. Springer, Heidelberg (2013)
Giunchiglia, E., Narizzano, M., Tacchella, A.: Clause/term resolution and learning in the evaluation of quantified Boolean formulas. JAIR 26(1), 371–416 (2006)
Giunchiglia, E., Marin, P., Narizzano, M.: Reasoning with quantified boolean formulas. In: Handbook of Satisfiability, pp. 761–780. IOS Press (2009)
Goultiaeva, A., Van Gelder, A., Bacchus, F.: A uniform approach for generating proofs and strategies for both true and false QBF formulas. In: IJCAI (2011)
Hertel, P., Bacchus, F., Pitassi, T., Van Gelder, A.: Clause learning can effectively p-simulate general propositional resolution. In: AAAI (2008)
Janota, M., Grigore, R., Marques-Silva, J.: On QBF proofs and preprocessing. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR-19 2013. LNCS, vol. 8312, pp. 473–489. Springer, Heidelberg (2013)
Janota, M., Klieber, W., Marques-Silva, J., Clarke, E.: Solving QBF with counterexample guided refinement. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 114–128. Springer, Heidelberg (2012)
Janota, M., Marques-Silva, J.: ∀Exp+Res does not P-Simulate Q-resolution. In: International Workshop on Quantified Boolean Formulas (2013)
Janota, M., Marques-Silva, J.: On propositional QBF expansions and Q-resolution. In: Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 67–82. Springer, Heidelberg (2013)
Kleine Büning, H., Bubeck, U.: Theory of quantified boolean formulas. In: Handbook of Satisfiability, pp. 735–760. IOS Press (2009)
Kleine Büning, H., Karpinski, M., Flögel, A.: Resolution for quantified Boolean formulas. Inf. Comput. 117(1), 12–18 (1995)
Kleine Büning, H., Subramani, K., Zhao, X.: Boolean functions as models for quantified boolean formulas. J. Autom. Reasoning 39(1), 49–75 (2007)
Klieber, W., Janota, M., Marques-Silva, J., Clarke, E.: Solving QBF with free variables. In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 415–431. Springer, Heidelberg (2013)
Klieber, W., Sapra, S., Gao, S., Clarke, E.: A non-prenex, non-clausal QBF solver with game-state learning. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 128–142. Springer, Heidelberg (2010)
Krajíček, J., Pudlák, P.: Quantified propositional calculi and fragments of bounded arithmetic. Mathematical Logic Quarterly 36(1), 29–46 (1990)
Marques Silva, J.P., Lynce, I., Malik, S.: Conflict-driven clause learning SAT solvers. In: Handbook of Satisfiability, IOS Press (2009)
Pipatsrisawat, K., Darwiche, A.: On the power of clause-learning SAT solvers as resolution engines. Artif. Intell. 175(2), 512–525 (2011)
Rintanen, J.: Asymptotically optimal encodings of conformant planning in QBF. In: AAAI, pp. 1045–1050. AAAI Press (2007)
Robinson, J.A.: A machine-oriented logic based on the resolution principle. J. ACM 12(1), 23–41 (1965)
Samer, M., Szeider, S.: Backdoor sets of quantified Boolean formulas. J. Autom. Reasoning 42(1), 77–97 (2009)
Slivovsky, F., Szeider, S.: Variable dependencies and Q-Resolution. In: International Workshop on Quantified Boolean Formulas (2013)
Van Gelder, A.: Variable independence and resolution paths for quantified Boolean formulas. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 789–803. Springer, Heidelberg (2011)
Van Gelder, A.: Contributions to the theory of practical quantified Boolean formula solving. In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 647–663. Springer, Heidelberg (2012)
Zhang, L., Malik, S.: Conflict driven learning in a quantified Boolean satisfiability solver. In: ICCAD, pp. 442–449 (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Beyersdorff, O., Chew, L., Janota, M. (2014). On Unification of QBF Resolution-Based Calculi. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds) Mathematical Foundations of Computer Science 2014. MFCS 2014. Lecture Notes in Computer Science, vol 8635. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44465-8_8
Download citation
DOI: https://doi.org/10.1007/978-3-662-44465-8_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-44464-1
Online ISBN: 978-3-662-44465-8
eBook Packages: Computer ScienceComputer Science (R0)