[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Approximating Pareto Set Topology by Cubic Interpolation on Bi-objective Problems

  • Conference paper
  • First Online:
Evolutionary Multi-Criterion Optimization (EMO 2019)

Abstract

Difficult Pareto set topology refers to multi-objective problems with geometries of the Pareto set such that neighboring optimal solutions in objective space differ in several or all variables in decision space. These problems can present a tough challenge for evolutionary multi-objective algorithms to find a good approximation of the optimal Pareto set well-distributed in decision and objective space. One important challenge optimizing these problems is to keep or restore diversity in decision space. In this work, we propose a method that learns a model of the topology of the solutions in the population by performing parametric spline interpolations for all variables in decision space. We use Catmull-Rom parametric curves as they allow us to deal with any dimension in decision space. The proposed method is appropriated for bi-objective problems since their optimal set is a one-dimensional curve according to the Karush-Kuhn-Tucker condition. Here, the proposed method is used to promote restarts from solutions generated by the model. We study the effectiveness of the proposed method coupled to NSGA-II and two variations of MOEA/D on problems with difficult Pareto set topology. These algorithms approach very differently the Pareto set. We argue and discuss their behavior and its implications for model building.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aguirre, H., Yazawa, Y., Oyama, A., Tanaka, K.: Extending A\(\varepsilon \)S\(\varepsilon \)H from many-objective to multi-objective optimization. In: Dick, G., et al. (eds.) SEAL 2014. LNCS, vol. 8886, pp. 239–250. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13563-2_21

    Chapter  Google Scholar 

  2. Catmull, E., Rom, R.: A class of local interpolating splines. In: Barnhill, R.E., Riesenfeld, R.F. (eds.) Computer Aided Geometric Design, pp. 317–326. Academic Press (1974)

    Google Scholar 

  3. Coello, C.A.C., Lamont, G.B., Veldhuizen, D.A.V.: Evolutionary Algorithms for Solving Multi-Objective Problems. Genetic and Evolutionary Computation. Springer, Secaucus (2006). https://doi.org/10.1007/978-0-387-36797-2

    Book  MATH  Google Scholar 

  4. Corne, D.W., Knowles, J.D., Oates, M.J.: The Pareto envelope-based selection algorithm for multiobjective optimization. In: Schoenauer, M., et al. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 839–848. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45356-3_82

    Chapter  Google Scholar 

  5. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  6. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable multi-objective optimization test problems. In: Congress on Evolutionary Computation, CEC 2002, pp. 825–830. IEEE Press (2002)

    Google Scholar 

  7. Li, H., Zhang, Q.: Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II. IEEE Trans. Evol. Comput. 13(2), 284–302 (2009)

    Article  Google Scholar 

  8. Marca, Y., et al.: Pareto dominance-based MOEAs on problems with difficult Pareto set topologies. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, GECCO 2018, pp. 189–190. ACM, New York (2018)

    Google Scholar 

  9. Mo, L., Dai, G., Zhu, J.: The RM-MEDA based on elitist strategy. In: Cai, Z., Hu, C., Kang, Z., Liu, Y. (eds.) ISICA 2010. LNCS, vol. 6382, pp. 229–239. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16493-4_24

    Chapter  Google Scholar 

  10. Morgan, D., Waldock, A., Corne, D.: MOPC/D: a new probability collectives algorithm for multiobjective optimisation. In: 2013 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making, MCDM, pp. 17–24 (2013)

    Google Scholar 

  11. Okabe, T., Jin, Y., Olhofer, M., Sendhoff, B.: On test functions for evolutionary multi-objective optimization. In: Yao, X., et al. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 792–802. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30217-9_80

    Chapter  Google Scholar 

  12. Schütze, O., Mostaghim, S., Dellnitz, M., Teich, J.: Covering Pareto sets by multilevel evolutionary subdivision techniques. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Thiele, L., Deb, K. (eds.) EMO 2003. LNCS, vol. 2632, pp. 118–132. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36970-8_9

    Chapter  MATH  Google Scholar 

  13. Yuksel, C., Schaefer, S., Keyser, J.: Parameterization and applications of Catmull-Rom curves. Comput. Aided Des. 43(7), 747–755 (2011)

    Article  Google Scholar 

  14. Zapotecas-Martínez, S., Coello, C.A.C., Aguirre, H.E., Tanaka, K.: A review of features and limitations of existing scalable multi-objective test suites. IEEE Trans. Evol. Comput. (2018). https://doi.org/10.1109/TEVC.2018.2836912

    Article  Google Scholar 

  15. Zhang, Q., Liu, W., Li, H.: The performance of a new version of MOEA/D on CEC09 unconstrained MOP test instances. In: 2009 IEEE Congress on Evolutionary Computation, pp. 203–208, May 2009. https://doi.org/10.1109/CEC.2009.4982949

  16. Zhang, Q., Zhou, A., Zhao, S., Suganthan, P.N., Liu, W., Tiwari, S.: Multiobjective optimization test instances for the CEC 2009 special session and competition. Technical report. University of Essex and Nanyang Technological University (2008)

    Google Scholar 

  17. Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In: Yao, X., et al. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 832–842. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30217-9_84

    Chapter  Google Scholar 

  18. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: improving the strength Pareto evolutionary algorithm. Technical report TIK-Report 103. ETH Zurich, Switzerland (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri Marca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Marca, Y. et al. (2019). Approximating Pareto Set Topology by Cubic Interpolation on Bi-objective Problems. In: Deb, K., et al. Evolutionary Multi-Criterion Optimization. EMO 2019. Lecture Notes in Computer Science(), vol 11411. Springer, Cham. https://doi.org/10.1007/978-3-030-12598-1_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12598-1_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12597-4

  • Online ISBN: 978-3-030-12598-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics