Abstract
Difficult Pareto set topology refers to multi-objective problems with geometries of the Pareto set such that neighboring optimal solutions in objective space differ in several or all variables in decision space. These problems can present a tough challenge for evolutionary multi-objective algorithms to find a good approximation of the optimal Pareto set well-distributed in decision and objective space. One important challenge optimizing these problems is to keep or restore diversity in decision space. In this work, we propose a method that learns a model of the topology of the solutions in the population by performing parametric spline interpolations for all variables in decision space. We use Catmull-Rom parametric curves as they allow us to deal with any dimension in decision space. The proposed method is appropriated for bi-objective problems since their optimal set is a one-dimensional curve according to the Karush-Kuhn-Tucker condition. Here, the proposed method is used to promote restarts from solutions generated by the model. We study the effectiveness of the proposed method coupled to NSGA-II and two variations of MOEA/D on problems with difficult Pareto set topology. These algorithms approach very differently the Pareto set. We argue and discuss their behavior and its implications for model building.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aguirre, H., Yazawa, Y., Oyama, A., Tanaka, K.: Extending A\(\varepsilon \)S\(\varepsilon \)H from many-objective to multi-objective optimization. In: Dick, G., et al. (eds.) SEAL 2014. LNCS, vol. 8886, pp. 239–250. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13563-2_21
Catmull, E., Rom, R.: A class of local interpolating splines. In: Barnhill, R.E., Riesenfeld, R.F. (eds.) Computer Aided Geometric Design, pp. 317–326. Academic Press (1974)
Coello, C.A.C., Lamont, G.B., Veldhuizen, D.A.V.: Evolutionary Algorithms for Solving Multi-Objective Problems. Genetic and Evolutionary Computation. Springer, Secaucus (2006). https://doi.org/10.1007/978-0-387-36797-2
Corne, D.W., Knowles, J.D., Oates, M.J.: The Pareto envelope-based selection algorithm for multiobjective optimization. In: Schoenauer, M., et al. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 839–848. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45356-3_82
Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)
Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable multi-objective optimization test problems. In: Congress on Evolutionary Computation, CEC 2002, pp. 825–830. IEEE Press (2002)
Li, H., Zhang, Q.: Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II. IEEE Trans. Evol. Comput. 13(2), 284–302 (2009)
Marca, Y., et al.: Pareto dominance-based MOEAs on problems with difficult Pareto set topologies. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, GECCO 2018, pp. 189–190. ACM, New York (2018)
Mo, L., Dai, G., Zhu, J.: The RM-MEDA based on elitist strategy. In: Cai, Z., Hu, C., Kang, Z., Liu, Y. (eds.) ISICA 2010. LNCS, vol. 6382, pp. 229–239. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16493-4_24
Morgan, D., Waldock, A., Corne, D.: MOPC/D: a new probability collectives algorithm for multiobjective optimisation. In: 2013 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making, MCDM, pp. 17–24 (2013)
Okabe, T., Jin, Y., Olhofer, M., Sendhoff, B.: On test functions for evolutionary multi-objective optimization. In: Yao, X., et al. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 792–802. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30217-9_80
Schütze, O., Mostaghim, S., Dellnitz, M., Teich, J.: Covering Pareto sets by multilevel evolutionary subdivision techniques. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Thiele, L., Deb, K. (eds.) EMO 2003. LNCS, vol. 2632, pp. 118–132. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36970-8_9
Yuksel, C., Schaefer, S., Keyser, J.: Parameterization and applications of Catmull-Rom curves. Comput. Aided Des. 43(7), 747–755 (2011)
Zapotecas-Martínez, S., Coello, C.A.C., Aguirre, H.E., Tanaka, K.: A review of features and limitations of existing scalable multi-objective test suites. IEEE Trans. Evol. Comput. (2018). https://doi.org/10.1109/TEVC.2018.2836912
Zhang, Q., Liu, W., Li, H.: The performance of a new version of MOEA/D on CEC09 unconstrained MOP test instances. In: 2009 IEEE Congress on Evolutionary Computation, pp. 203–208, May 2009. https://doi.org/10.1109/CEC.2009.4982949
Zhang, Q., Zhou, A., Zhao, S., Suganthan, P.N., Liu, W., Tiwari, S.: Multiobjective optimization test instances for the CEC 2009 special session and competition. Technical report. University of Essex and Nanyang Technological University (2008)
Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In: Yao, X., et al. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 832–842. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30217-9_84
Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: improving the strength Pareto evolutionary algorithm. Technical report TIK-Report 103. ETH Zurich, Switzerland (2001)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Marca, Y. et al. (2019). Approximating Pareto Set Topology by Cubic Interpolation on Bi-objective Problems. In: Deb, K., et al. Evolutionary Multi-Criterion Optimization. EMO 2019. Lecture Notes in Computer Science(), vol 11411. Springer, Cham. https://doi.org/10.1007/978-3-030-12598-1_31
Download citation
DOI: https://doi.org/10.1007/978-3-030-12598-1_31
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-12597-4
Online ISBN: 978-3-030-12598-1
eBook Packages: Computer ScienceComputer Science (R0)