[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Comparison of Different Many-Objective Optimization Algorithms for Energy System Optimization

  • Conference paper
  • First Online:
Applications of Evolutionary Computation (EvoApplications 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11454))

Abstract

The usage of renewable energy sources, storage devices, and flexible loads has the potential to greatly improve the overall efficiency of a building complex or factory. However, one needs to consider a multitude of upgrade options and several performance criteria. We therefore formulated this task as a many-objective optimization problem with 10 design parameters and 5 objectives (investment cost, yearly energy costs, \(CO_2\) emissions, system resilience, and battery lifetime). Our target was to investigate the variations in the outputs of different optimization algorithms. For this we tested several many-objective optimization algorithms in terms of their hypervolume performance and the practical relevance of their results. We found substantial performance variations between the algorithms, both regarding hypervolume and in the basic distribution of solutions in objective space. Also the concept of desirabilities was employed to better visualize and assess the quality of solutions found.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wagner, T., Trautmann, H.: Integration of preferences in hypervolume-based multiobjective evolutionary algorithms by means of desirability functions. IEEE Trans. Evol. Comput. 14(5), 688–701 (2010)

    Article  Google Scholar 

  2. Yang, R., Wang, L.: Multi-objective optimization for decision-making of energy and comfort management in building automation and control. Sustain. Cities Soc. 2(1), 1–7 (2012). http://www.sciencedirect.com/science/article/pii/S221067071100059X

  3. Fadaee, M., Radzi, M.: Multi-objective optimization of a stand-alone hybrid renewable energy system by using evolutionary algorithms: a review. Renew. Sustain. Energy Rev. 16(5), 3364–3369 (2012). http://www.sciencedirect.com/science/article/pii/S1364032112001669

  4. Khodr, H.M., Vale, Z.A., Ramos, C., Soares, J.P., Morais, H., Kádár, P.: Optimal methodology for renewable energy dispatching in islanded operation. In: IEEE PES T D 2010, pp. 1–7 (2010)

    Google Scholar 

  5. Naharudinsyah, I., Limmer, S.: Optimal charging of electric vehicles with trading on the intraday electricity market. Energies 11(6), 1416 (2018)

    Article  Google Scholar 

  6. Fritzson, P., Bunus, P.: Modelica – a general object-oriented language for continuous and discrete-event system modeling. In: Proceedings of the 35th Annual Simulation Symposium, pp. 14–18 (2002)

    Google Scholar 

  7. Unger, R., Mikoleit, B., Schwan, T., Bäker, B., Kehrer, C., Rodemann, T.: Green building - modeling renewable building energy systems with emobility using Modelica. In: Proceedings of Modelica 2012 Conference. Modelica Association, Munich, Germany (2012)

    Google Scholar 

  8. Rodemann, T.: A many-objective configuration optimization for building energy management. In: Proceedings of IEEE WCCI (CEC) (2018)

    Google Scholar 

  9. Ogino, Y., Iida, R., Rodemann, T.: Using desirability functions for many-objective optimization of a hybrid car controller. In: GECCO 2017 Conference Companion (2017)

    Google Scholar 

  10. Cheng, R., Rodemann, T., Fischer, M., Olhofer, M., Jin, Y.: Evolutionary many-objective optimization of hybrid electric vehicle control: from general optimization to preference articulation. IEEE Trans. Emerg. Top. Comput. Intell. 1(2), 97–111 (2017)

    Article  Google Scholar 

  11. Tian, Y., Cheng, R., Zhang, X., Jin, Y.: PlatEMO: a MATLAB platform for evolutionary multi-objective optimization. CoRR abs/1701.00879 (2017). http://arxiv.org/abs/1701.00879

  12. López-Ibáñez, M., Dubois-Lacoste, J., Cáceres, L.P., Birattari, M., Stützle, T.: The irace package: iterated racing for automatic algorithm configuration. Oper. Res. Perspect. 3, 43–58 (2016)

    Article  MathSciNet  Google Scholar 

  13. Rodemann, T.: Industrial portfolio management for many-objective optimization algorithms. In: Proceedings of IEEE WCCI 2018 (CEC) (2018)

    Google Scholar 

  14. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6, 182–197 (2002)

    Article  Google Scholar 

  15. Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints. IEEE Trans. Evol. Comput. 18(4), 577–601 (2014)

    Article  Google Scholar 

  16. Cheng, R., Jin, Y., Olhofer, M., Sendhoff, B.: A reference vector guided evolutionary algorithm for many-objective optimization. IEEE Trans. Evol. Comput. 20(5), 773–791 (2016)

    Article  Google Scholar 

  17. Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In: Yao, X., et al. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 832–842. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30217-9_84

    Chapter  Google Scholar 

  18. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: improving the strength pareto evolutionary algorithm for multiobjective optimization. In: Proceedings of Evolutionary Methods for Design, Optimisation and Control with Application to Industrial Problems, pp. 95–100 (2001)

    Google Scholar 

  19. Zhang, X., Tian, Y., Jin, Y.: A knee point driven evolutionary algorithm for many-objective optimization. IEEE Trans. Evol. Comput. 19(6), 761–776 (2015)

    Article  Google Scholar 

  20. Kukkonen, S., Lampine, J.: GDE3: the third evolution step of generalized differential evolution. In: Proceedings of the 2005 IEEE Congress on Evolutionary Computation, pp. 443–450 (2005)

    Google Scholar 

  21. Coello, C.C., Lechuga, M.S.: MOPSO: a proposal for multiple objective particle swarm optimization. In: Proceedings of the 2002 IEEE Congress on Evolutionary Computation, pp. 1051–1056 (2002)

    Google Scholar 

  22. Wang, R., Purshouse, R.C., Fleming, P.J.: Preference-inspired coevolutionary algorithms for many-objective optimization. IEEE Trans. Evol. Comput. 17(4), 474–494 (2013)

    Google Scholar 

  23. Wang, H., Jiao, L., Yao, X.: Two Arch2: an improved two-archive algorithm for many-objective optimization. IEEE Trans. Evol. Comput. 19, 524–541 (2015)

    Article  Google Scholar 

  24. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

    Article  Google Scholar 

  25. Bader, J., Zitzler, E.: HypE: an algorithm for fast hypervolume-based many-objective optimization. Evol. Comput. 19(1), 45–76 (2011)

    Article  Google Scholar 

  26. Chugh, T., Jin, Y., Miettinen, K., Hakanen, J., Sindhya, K.: A surrogate-assisted reference vector guided evolutionary algorithm for computationally expensive many-objective optimization. IEEE Trans. Evol. Comput. 22(1), 129–142 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Rodemann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rodemann, T. (2019). A Comparison of Different Many-Objective Optimization Algorithms for Energy System Optimization. In: Kaufmann, P., Castillo, P. (eds) Applications of Evolutionary Computation. EvoApplications 2019. Lecture Notes in Computer Science(), vol 11454. Springer, Cham. https://doi.org/10.1007/978-3-030-16692-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16692-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16691-5

  • Online ISBN: 978-3-030-16692-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics