[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Modelling Similarity for Comparing Physical Activity Profiles - A Data-Driven Approach

  • Conference paper
  • First Online:
Case-Based Reasoning Research and Development (ICCBR 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11156))

Included in the following conference series:

Abstract

Objective measurements of physical behaviour are an interesting research field from the public health and computer science perspective. While for public health research, measurements with a high quality and feasible setup is important, the analysis of and reasoning about the data is what we will present in this work. Our focus in this work is the comprehensive representation of physical behaviour throughout consecutive days and allowing to find subgroups in the population with similar physical activity levels.

We have a unique data set of 4628 participants wearing tri-axial accelerometers for six days and will present a case-based reasoning (CBR) system that can find and compare similar activity profiles. In this work, we focus on creating a CBR model using myCBR and do initial experiments with the resulting system. We will introduce a data-driven approach for modelling local similarity measures. Eventually, in the experiments we will show that for the given data set, the CBR system outperforms a k-Nearest Neighbor regressor in finding most similar participants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.biology-online.org/dictionary/Phenotype.

  2. 2.

    https://wwwn.cdc.gov/nchs/nhanes/default.aspx.

  3. 3.

    http://who.int/features/factfiles/physical_activity/en/.

  4. 4.

    https://www.ntnu.no/hunt4/.

  5. 5.

    https://www.ntnu.no/hunt/.

  6. 6.

    Since the study is ongoing, we have used the data available by March, 12 2018.

  7. 7.

    https://axivity.com/downloads/ax3.

  8. 8.

    https://github.com/kerstinbach/mycbr-rest-example.

References

  1. A, A., MH, F., MB, R.: Health effects of overweight and obesity in 195 countries over 25 years. New England Journal of Medicine 377(1), 13–27 (2017), pMID: 28604169

    Google Scholar 

  2. Abdel-Aziz, A., Strickert, M., Hüllermeier, E.: Learning solution similarity in preference-based CBR. In: Lamontagne, L., Plaza, E. (eds.) ICCBR 2014. LNCS (LNAI), vol. 8765, pp. 17–31. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11209-1_3

    Chapter  Google Scholar 

  3. Aitchison, J., Egozcue, J.J.: Compositional data analysis: where are we and where should we be heading? Math. Geol. 37(7), 829–850 (2005)

    Article  MathSciNet  Google Scholar 

  4. Arif, M., Kattan, A.: Physical activities monitoring using wearable acceleration sensors attached to the body. PLOS ONE 10(7), 1–16 (2015)

    Article  Google Scholar 

  5. Bach, K., Althoff, K.-D.: Developing case-based reasoning applications using myCBR 3. In: Agudo, B.D., Watson, I. (eds.) ICCBR 2012. LNCS (LNAI), vol. 7466, pp. 17–31. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32986-9_4

    Chapter  Google Scholar 

  6. Bergmann, R., Kolodner, J., Plaza, E.: Representation in case-based reasoning. Knowl. Eng. Rev. 20(03), 209 (2005)

    Article  Google Scholar 

  7. Bulling, A., Blanke, U., Schiele, B.: A tutorial on human activity recognition using body-worn inertial sensors. ACM Comput. Surv. 46(3), 1–33 (2014)

    Article  Google Scholar 

  8. Campillo-Gimenez, B., Jouini, W., Bayat, S., Cuggia, M.: Improving case-based reasoning systems by combining k-nearest neighbour algorithm with logistic regression in the prediction of patients’ registration on the renal transplant waiting list. PLoS ONE 8(9), e71991 (2013)

    Article  Google Scholar 

  9. Canensi, L., Leonardi, G., Montani, S., Terenziani, P.: Multi-level interactive medical process mining. In: ten Teije, A., Popow, C., Holmes, J.H., Sacchi, L. (eds.) AIME 2017. LNCS (LNAI), vol. 10259, pp. 256–260. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59758-4_28

    Chapter  Google Scholar 

  10. Dumuid, D., et al.: The compositional isotemporal substitution model: a method for estimating changes in a health outcome for reallocation of time between sleep, physical activity and sedentary behaviour. Stat. Methods Med. Res. (2017)

    Google Scholar 

  11. Gabel, T., Godehardt, E.: Top-down induction of similarity measures using similarity clouds. In: Hüllermeier, E., Minor, M. (eds.) ICCBR 2015. LNCS (LNAI), vol. 9343, pp. 149–164. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24586-7_11

    Chapter  Google Scholar 

  12. El-Sappagh, H., El-Sappagh, S., Elmogy, M.: Case representation and indexing. In: Foundations of Soft Case-Based Reasoning, pp. 34–74 (2004)

    Google Scholar 

  13. Howie, E.K., Smith, A.L., Mcveigh, J.A., Straker, L.M.: Accelerometer-derived activity phenotypes in young adults: a latent class analysis. Int. J. Behav. Med. (2018)

    Google Scholar 

  14. Hüllermeier, E., Schlegel, P.: Preference-based CBR: first steps toward a methodological framework. In: Ram, A., Wiratunga, N. (eds.) ICCBR 2011. LNCS (LNAI), vol. 6880, pp. 77–91. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23291-6_8

    Chapter  Google Scholar 

  15. Khamparia, A., Pandey, B.: A novel method of case representation and retrieval in CBR for e-learning. Educ. Inf. Technol. 22(1), 337–354 (2017)

    Article  Google Scholar 

  16. Kohl, H.W., et al.: The pandemic of physical inactivity: global action for public health. Lancet 380(9838), 294–305 (2012)

    Article  Google Scholar 

  17. Lagersted-Olsen, J., et al.: Comparison of objectively measured and self-reported time spent sitting. Int. J. Sport. Med. 35(06), 534–540 (2013)

    Article  Google Scholar 

  18. Lee, I.M., Shiroma, E.J.: Using accelerometers to measure physical activity in large-scale epidemiological studies: issues and challenges. Br. J. Sport. Med. 48(3), 197–201 (2013)

    Article  Google Scholar 

  19. Lee, I.M., Shiroma, E.J., Lobelo, F., Puska, P., Blair, S.N., Katzmarzyk, P.T.: Effect of physical inactivity on major non-communicable diseases worldwide: an analysis of burden of disease and life expectancy. Lancet 380(9838), 219–229 (2012)

    Article  Google Scholar 

  20. Li, X.: Digital health: tracking physiomes and activity using wearable biosensors reveals useful health-related information. PLOS Biol. 15(1), e2001402 (2017)

    Article  Google Scholar 

  21. Marschollek, M.: A semi-quantitative method to denote generic physical activity phenotypes from long-term accelerometer data - the atlas index. PLoS ONE 8(5), e63522 (2013)

    Article  Google Scholar 

  22. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  23. Plis, K., Bunescu, R.C., Marling, C.R., Shubrook, J., Schwartz, F.: A machine learning approach to predicting blood glucose levels for diabetes management. In: AAAI Workshop: Modern Artificial Intelligence for Health Analytics (2014)

    Google Scholar 

  24. Prince, S.A., Adamo, K.B., Hamel, M., Hardt, J., Gorber, S.C., Tremblay, M.: A comparison of direct versus self-report measures for assessing physical activity in adults: a systematic review. Int. J. Behav. Nutr. Phys. Act. 5(1), 56 (2008)

    Article  Google Scholar 

  25. Raitakan, O.T., Porkka, K.V.K., Taimela, S., Telama, R., Räsänen, L., Vllkari, J.S.: Effects of persistent physical activity and inactivity on coronary risk factors in children and young adults the cardiovascular risk in young finns study. Am. J. Epidemiol. 140(3), 195–205 (1994)

    Article  Google Scholar 

  26. Richter, M.M.: The knowledge contained in similarity measures. In: Veloso, M.M., Aamodt, A. (eds.) Case-Based Reasoning Research and Development, Proceedings of the First International Conference, ICCBR 1995. LNCS, vol. 1010. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60598-3

    Google Scholar 

  27. Sani, S., Wiratunga, N., Massie, S., Cooper, K.: kNN sampling for personalised human activity recognition. In: Aha, D.W., Lieber, J. (eds.) ICCBR 2017. LNCS (LNAI), vol. 10339, pp. 330–344. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61030-6_23

    Chapter  Google Scholar 

  28. Smyth, B., Cunningham, P.: Running with cases: a CBR approach to running your best marathon. In: Aha, D.W., Lieber, J. (eds.) ICCBR 2017. LNCS (LNAI), vol. 10339, pp. 360–374. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61030-6_25

    Chapter  Google Scholar 

  29. Stahl, A., Roth-Berghofer, T.R.: Rapid prototyping of CBR applications with the open source tool myCBR. In: Althoff, K.-D., Bergmann, R., Minor, M., Hanft, A. (eds.) ECCBR 2008. LNCS (LNAI), vol. 5239, pp. 615–629. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85502-6_42

    Chapter  Google Scholar 

  30. Uddin, M., Loutfi, A.: Physical activity identification using supervised machine learning and based on pulse rate. Int. J. Adv. Comput. Sci. Appl. 4(7), 210–217 (2013)

    Google Scholar 

  31. Wen, C.P., Wu, X.: Stressing harms of physical inactivity to promote exercise. Lancet 380(9838), 192–193 (2012)

    Article  Google Scholar 

  32. Willetts, M., Hollowell, S., Aslett, L., Holmes, C., Doherty, A.: Statistical machine learning of sleep and physical activity phenotypes from sensor data in 96,220 uk biobank participants. BioRxiv (2018)

    Google Scholar 

  33. Yao, B., Li, S.: Anmm4cbr: a case-based reasoning method for gene expression data classification. Algorithms Mol. Biol. 5(1), 14 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepika Verma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Verma, D., Bach, K., Mork, P.J. (2018). Modelling Similarity for Comparing Physical Activity Profiles - A Data-Driven Approach. In: Cox, M., Funk, P., Begum, S. (eds) Case-Based Reasoning Research and Development. ICCBR 2018. Lecture Notes in Computer Science(), vol 11156. Springer, Cham. https://doi.org/10.1007/978-3-030-01081-2_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01081-2_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01080-5

  • Online ISBN: 978-3-030-01081-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics