[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Preference-Based CBR: First Steps toward a Methodological Framework

  • Conference paper
Case-Based Reasoning Research and Development (ICCBR 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6880))

Included in the following conference series:

Abstract

Building on recent research on preference handling in artificial intelligence and related fields, our general goal is to develop a coherent and universally applicable methodological framework for CBR on the basis of formal concepts and methods for knowledge representation and reasoning with preferences. A preference-based approach to CBR appears to be appealing for several reasons, notably because case-based experiences naturally lend themselves to representations in terms of preference relations, even when not dealing with preference information in a literal sense. Moreover, the flexibility and expressiveness of a preference-based formalism well accommodate the uncertain and approximate nature of case-based problem solving. In this paper, we make a first step toward a preference-based formalization of CBR. Apart from providing a general outline of the framework as a whole, we specifically address the step of case-based inference. The latter consists of inferring preferences for candidate solutions in the context of a new problem, given such preferences in similar situations. Our case-based approach to predicting preference models is concretely realized for a scenario in which solutions are represented in the form of subsets of a reference set. First experimental results are presented to demonstrate the effectiveness of this approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aamodt, A., Plaza, E.: Case-based reasoning: Foundational issues, methodological variations, and system approaches. AI Communications 7(1), 39–59 (1994)

    Google Scholar 

  2. Richter, M.M.: The knowledge contained in similarity measrues (1995) (invited talk at ICCBR 1995), wwwagr.informatik.uni-kl.de/~lsa/cbr/richtericcbr95remarks.html

  3. Watson, I.: Case-based reasoning is a methodology not a technology. In: Mile, R., Moulton, M., Bramer, M. (eds.) Research and Development in Expert Systems XV, London, pp. 213–223 (1998)

    Google Scholar 

  4. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Techniques. MIT Press, Cambridge (2009)

    MATH  Google Scholar 

  5. Hüllermeier, E.: Case-Based Approximate Reasoning. Theory and Decision Library, Series B: Mathematical and Statistical Methods, vol. 44, 370 pages. Springer, Heidelberg (2007)

    MATH  Google Scholar 

  6. Doyle, J.: Prospects for preferences. Comput. Intell. 20(2), 111–136 (2004)

    Article  MathSciNet  Google Scholar 

  7. Goldsmith, J., Junker, U.: Special Issue on preference handling for Artificial Intelligence 29(4) (2008)

    Google Scholar 

  8. Domshlak, C., Hüllermeier, E., Kaci, S., Prade, H.: Preferences in AI: An overview. Artificial Intelligence (to appear)

    Google Scholar 

  9. Brafman, R.I., Domshlak, C.: Preference handling–an introductory tutorial. AI Magazine 30(1) (2009)

    Google Scholar 

  10. Brinker, K., Hüllermeier, E.: Label ranking in case-based reasoning. In: Richter, M.M., Weber, R.O. (eds.) ICCBR 2007. LNCS (LNAI), vol. 4626, pp. 77–91. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  11. Kibler, D., Aha, D.W., Albert, M.K.: Instance-based prediction of real-valued attributes. Computational Intelligence 5, 51–57 (1989)

    Article  Google Scholar 

  12. Aha, D.W., Kibler, D., Albert, M.K.: Instance-based learning algorithms. Machine Learning 6(1), 37–66 (1991)

    Google Scholar 

  13. Binshtok, M., Brafman, R.I., Domshlak, C., Shiomony, S.E.: Generic preferences over subsets of structured objects. Journal of Artificial Intelligence Research 34, 133–164 (2009)

    MathSciNet  MATH  Google Scholar 

  14. Minor, M., Bergmann, R., Görg, S., Walter, K.: Towards case-based adaptation of workflows. In: Bichindaritz, I., Montani, S. (eds.) ICCBR 2010. LNCS, vol. 6176, pp. 421–435. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  15. Cheng, W., Hüllermeier, E.E.: Combining instance-based learning and logistic regression for multilabel classification. Machine Learning 76(2-3), 211–225 (2009)

    Article  Google Scholar 

  16. Peterson, M.: An Introduction to Decision Theory. Cambridge Univ. Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  17. Butz, M., Sastry, K., Goldberg, D.E.: Tournament selection: Stable fitness pressure in XCS. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2724, pp. 1857–1869. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  18. Tsoumakas, G., Katakis, I.: Multi-label classification: An overview. Int. J. of Data Warehousing and Mining 3(3), 1–13 (2007)

    Article  Google Scholar 

  19. Trohidis, K., Tsoumakas, G., Kalliris, G., Vlahavas, I.: Multilabel classification of music into emotions. In: Proc. Int. Conf. Music Information Retrieval (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ashwin Ram Nirmalie Wiratunga

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hüllermeier, E., Schlegel, P. (2011). Preference-Based CBR: First Steps toward a Methodological Framework. In: Ram, A., Wiratunga, N. (eds) Case-Based Reasoning Research and Development. ICCBR 2011. Lecture Notes in Computer Science(), vol 6880. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23291-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23291-6_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23290-9

  • Online ISBN: 978-3-642-23291-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics