Abstract
Multi-objective optimization is an integral part of optimization activities and has a tremendous practical importance, since almost all real-world optimization problems are ideally suited to be modeled using multiple conflicting objectives. The classical means of solving such problems were primarily focused on scalarizing multiple objectives into a single objective, whereas the evolutionary means have been to solve a multi-objective optimization problem as it is. In this chapter, we discuss the fundamental principles of multi-objective optimization, the differences between multi-objective optimization and single-objective optimization, and describe a few well-known classical and evolutionary algorithms for multi-objective optimization. Two application case studies reveal the importance of multi-objective optimization in practice. A number of research challenges are then highlighted. The chapter concludes by suggesting a few tricks of the trade and mentioning some key resources to the field of multi-objective optimization.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Babu B, Jehan ML (2003) Differential evolution for multi-objective optimization. In: Proceedings of the CEC’2003, Canberra, vol 4. IEEE, Piscataway, pp 2696–2703
Bader J, Deb K, Zitzler E (2010) Faster hypervolume-based search using Monte Carlo sampling. In: Proceedings of the MCDM 2008, Auckland. LNEMS 634. Springer, Heidelberg, pp 313–326
Bagchi T (1999) Multiobjective scheduling by genetic algorithms. Kluwer, Boston
Balicki J, Kitowski Z (2001) Multicriteria evolutionary algorithm with tabu search for task assignment. In: Proceedings of the EMO-01, Zurich, pp 373–384
Bandaru S, Deb K (2010) Automated discovery of vital knowledge from pareto-optimal solutions: first results from engineering design. In: Proceedings of the WCCI-2010, Barcelona. IEEE, Piscataway
Bandaru S, Deb K (2011a) Automated innovization for simultaneous discovery of multiple rules in bi-objective problems. In: Proceedings of the EMO-2011, Ouro Preto. Springer, Heidelberg, pp 1–15
Bandaru S, Deb K (2011b) Towards automating the discovery of certain innovative design principles through a clustering based optimization technique. Eng Optim 43:911–941
Bandyopadhyay S, Saha S, Maulik U, Deb K (2008) A simulated annealing-based multiobjective optimization algorithm: Amosa. IEEE Trans Evol Comput 12:269–283
Belton V, Stewart TJ (2002) Multiple criteria decision analysis: an integrated approach. Kluwer, Boston
Bleuler S, Brack M, Zitzler E (2001) Multiobjective genetic programming: reducing bloat using SPEA2. In: Proceedings of the CEC-2001, Seoul, pp 536–543
Bradstreet L, While L, Barone L (2008) A fast incremental hypervolume algorithm. IEEE Trans Evol Comput 12:714–723
Branke J (2001) Evolutionary optimization in dynamic environments. Springer, Heidelberg
Branke J, Greco S, Slowinski R, Zielniewicz P (2009) Interactive evolutionary multiobjective optimization using robust ordinal regression. In: Proceedings of the EMO-09, Nantes. Springer, Berlin, pp 554–568
Brockhoff D, Zitzler E (2006) Are all objectives necessary? On dimensionality reduction in evolutionary multiobjective optimization. In: PPSN IX, Reykjavik. LNCS 4193, pp 533–542
Brockhoff D, Zitzler E (2007) Dimensionality reduction in multiobjective optimization: the minimum objective subset problem. In: Waldmann KH, Stocker UM (eds) OR proceedings 2006, Karlsruhe, Germany. Springer, Berlin, pp 423–429
Chankong V, Haimes YY (1983) Multiobjective decision making theory and methodology. North-Holland, New York
Chattopadhyay A, Seeley C (1994) A simulated annealing technique for multiobjective optimization of intelligent structures. Smart Mater Struct 3:98–106
Coello CAC (2000) Treating objectives as constraints for single objective optimization. Eng Optim 32:275–308
Coello CAC (2003) http://www.lania.mx/~ccoello/EMOO/
Coello CAC, Lamont GB (2004) Applications of multi-objective evolutionary algorithms. World Scientific, Singapore
Coello CAC, Lechuga MS (2002) MOPSO: a proposal for multiple objective particle swarm optimization. In: Proceedings of the CEC 2002, vol 2. IEEE, Piscataway, Honolulu, USA, pp. 1051–1056
Coello CAC, Toscano G (2000) A micro-genetic algorithm for multi-objective optimization. Technical report Lania-RI-2000–06, Laboratoria Nacional de Informatica Avanzada, Xalapa, Veracruz
Coello CAC, Van Veldhuizen DA, Lamont G (2002) Evolutionary algorithms for solving multi-objective problems. Kluwer, Boston
Coello CAC, Aguirre AH, Zitzler E (eds) (2005) Evolutionary multi-criterion optimization (EMO-2005). LNCS 3410. Springer, Berlin
Collette Y, Siarry P (2004) Multiobjective optimization: principles and case studies. Springer, Berlin
Cormen TH, Leiserson CE, Rivest RL (1990) Introduction to algorithms. Prentice-Hall, New Delhi
Corne DW, Knowles JD (2007) Techniques for highly multiobjective optimization: some nondominated points are better than others. In: Proceedings of the GECCO-07, London. ACM, New York, pp 773–780
Corne DW, Knowles JD, Oates M (2000) The Pareto envelope-based selection algorithm for multiobjective optimization. In: Proceedings of the PPSN-VI, Paris, pp 839–848
Coverstone-Carroll V, Hartmann JW, Mason WJ (2000) Optimal multi-objective low-thurst spacecraft trajectories. Comput Methods Appl Mech Eng 186:387–402
Deb K (1995) Optimization for engineering design: algorithms and examples. Prentice-Hall, New Delhi
Deb K (1999) Solving goal programming problems using multi-objective genetic algorithms. In: Proceedings of the CEC, Washington, pp 77–84
Deb K (2001) Multi-objective optimization using evolutionary algorithms. Wiley, Chichester
Deb K (2003) Unveiling innovative design principles by means of multiple conflicting objectives. Eng Optim 35:445–470
Deb K, Datta R (2010) A fast and accurate solution of constrained optimization problems using a hybrid bi-objective and penalty function approach. In: Proceedings of the IEEE WCCI 2010, Barcelona, pp 165–172
Deb K, Jain S (2002) Running performance metrics for evolutionary multi-objective optimization. In: Proceedings of the 4th Asia-Pacific conference on simulated evolution and learning (SEAL-02), Singapore, pp 13–20
Deb K, Jain S (2003) Multi-speed gearbox design using multi-objective evolutionary algorithms. ASME Trans Mech Des 125:609–619
Deb K, Jain H (2012) Handling many-objective problems using an improved NSGA-II procedure. In: Proceedings of the CEC 2012, Brisbane
Deb K, Kumar A (2007a) Interactive evolutionary multi-objective optimization and decision-making using reference direction method. In: Proceedings of the GECCO 2007, London. ACM, New York, pp 781–788
Deb K, Kumar A (2007b) Light beam search based multi-objective optimization using evolutionary algorithms. In: Proceedings of the CEC-07, Singapore, pp 2125–2132
Deb K, Saha A (2012) Multimodal optimization using a bi-objective evolutionary algorithms. Evol Comput J 20:27–62
Deb K, Saxena D (2006) Searching for Pareto-optimal solutions through dimensionality reduction for certain large-dimensional multi-objective optimization problems. In: Proceedings of the WCCI 2006, Vancouver, pp 3352–3360
Deb K, Srinivasan A (2006) Innovization: innovating design principles through optimization. In: Proceedings of the GECCO-2006, Seattle. ACM, New York, pp 1629–1636
Deb K, Tiwari S (2004) Multi-objective optimization of a leg mechanism using genetic algorithms. Technical report KanGAL 2004005, Kanpur Genetic Algorithms Laboratory (KanGAL), IIT, Kanpur
Deb K, Agrawal S, Pratap A, Meyarivan T (2002) A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6:182–197
Deb K, Zope P, Jain A (2003a) Distributed computing of pareto-optimal solutions using multi-objective evolutionary algorithms. In: Proceedings of the EMO-03, Faro. LNCS 2632, pp 535–549
Deb K, Mohan M, Mishra S (2003b) Towards a quick computation of well-spread pareto-optimal solutions. In: Proceedings of the EMO-03, Faro. LNCS 2632, pp 222–236
Deb K, Jain P, Gupta N, Maji H (2004a) Multi-objective placement of electronic components using evolutionary algorithms. IEEE Trans Compon Packag Technol 27:480–492
Deb K, Mitra K, Dewri R, Majumdar S (2004b) Towards a better understanding of the epoxy polymerization process using multi-objective evolutionary computation. Chem Eng Sci 59:4261–4277
Deb K, Thiele L, Laumanns M, Zitzler E (2005) Scalable test problems for evolutionary multi-objective optimization. In: Abraham A et al (eds) Evolutionary multiobjective optimization. Springer, London, pp 105–145
Deb K, Sundar J, Uday N, Chaudhuri S (2006) Reference point based multi-objective optimization using evolutionary algorithms. Int J Comput Intell Res (IJCIR) 2:273–286
Deb K, Rao UB, Karthik S (2007) Dynamic multi-objective optimization and decision-making using modified NSGA-II: a case study on hydro-thermal power scheduling bi-objective optimization problems. In: Proceedings of the EMO-2007, Matsushima
Deb K, Sinha A, Korhonen P, Wallenius J (2010) An interactive evolutionary multi-objective optimization method based on progressively approximated value functions. IEEE Trans Evol Comput 14:723–739
Ehrgott M (2000) Multicriteria optimization. Springer, Berlin
Ehrgott M, Fonseca CM, Gandibleux X, Hao JK, Sevaux M (eds) (2009) Proceedings of the EMO-2009, Nantes. LNCS 5467. Springer, Heidelberg
Fonseca C, Fleming P, Zitzler E, Deb K, Thiele L (eds) (2003) Proceedings of the EMO-2003, Faro. LNCS 2632. Springer, Heidelberg
Giel O (2003) Expected runtimes of a simple multi-objective evolutionary algorithm. In: Proceedings of the CEC-2003, Canberra. IEEE, Piscatway, pp 1918–1925
Goh CK, Tan KC (2009) Evolutionary multi-objective optimization in uncertain environments: issues and algorithms. Springer, Berlin
Goldberg DE (1989) Genetic algorithms for search, optimization, and machine learning. Addison-Wesley, Reading
Gravel M, Price WL, Gagné C (2002) Scheduling continuous casting of aluminum using a multiple objective ant colony optimization metaheuristic. Eur J Oper Res 143:218–229
Haimes YY, Lasdon LS, Wismer DA (1971) On a bicriterion formulation of the problems of integrated system identification and system optimization. IEEE Trans Syst Man Cybern 1:296–297
Hansen MP (1997) Tabu search in multiobjective optimization: MOTS. Paper presented at MCDM’97, University of Cape Town
Huband S, Barone L, While L, Hingston P (2005) A scalable multi-objective test problem toolkit. In: Proceedings of the EMO-2005, Guanajuato. Springer, Berlin
Hughes EJ (2005) Evolutionary many-objective optimization: many once or one many? In: Proceedings of the CEC-2005, Edinburgh, pp 222–227
Ishibuchi H, Tsukamoto N, Nojima Y (2008) Evolutionary many-objective optimization: a short review. In: Proceedings of the CEC-2008, Hong Kong, pp 2424–2431
Jensen MT (2003a) Guiding single-objective optimization using multi-objective methods. In: Raidl G et al (eds) Applications of evolutionary computing. Evoworkshops 2003: EvoBIO, EvoCOP, EvoIASP, EvoMUSART, EvoROB, and EvoSTIM, Essex. LNCS 2611. Springer, Berlin, pp 199–210
Jensen MT (2003b) Reducing the run-time complexity of multiobjective EAs. IEEE Trans Evol Comput 7:503–515
Khor EF, Tan KC, Lee TH (2001) Tabu-based exploratory evolutionary algorithm for effective multi-objective optimization. In: Proceedings of the EMO-01, Zurich, pp 344–358
Knowles JD, Corne DW (2000) Approximating the non-dominated front using the Pareto archived evolution strategy. Evol Comput J 8:149–172
Knowles J, Corne D (2007) Quantifying the effects of objective space dimension in evolutionary multiobjective optimization. In: Proceedings of the EMO-2007, Matsushima. LNCS 4403, pp 757–771
Knowles JD, Corne DW, Deb K (2008) Multiobjective problem solving from nature. Natural computing series. Springer, Berlin
Kumral M (2003) Application of chance-constrained programming based on multi-objective simulated annealing to solve a mineral blending problem. Eng Optim 35:661–673
Kung HT, Luccio F, Preparata FP (1975) On finding the maxima of a set of vectors. J Assoc Comput Mach 22:469–476
Laumanns M, Thiele L, Deb K, Zitzler E (2002a) Combining convergence and diversity in evolutionary multi-objective optimization. Evol Comput 10:263–282
Laumanns M, Thiele L, Zitzler E, Welzl E, Deb K (2002b) Running time analysis of multi-objective evolutionary algorithms on a simple discrete optimization problem. In: Proceedings of the PPSN-VII, Granada, pp 44–53
Laumanns M, Thiele L, Zitzler E (2004) Running time analysis of multiobjective evolutionary algorithms on pseudo-Boolean functions. IEEE Trans Evol Comput 8:170–182
López JA, Coello Coello CA (2009) Some techniques to deal with many-objective problems. In: Proceedings of the 11th annual conference companion on genetic and evolutionary computation, Montreal. ACM, New York, pp 2693–2696
Loughlin DH, Ranjithan S (1997) The neighborhood constraint method: a multiobjective optimization technique. In: Proceedings of the 7th international conference on genetic algorithms, East Lansing, pp 666–673
McMullen PR (2001) An ant colony optimization approach to addessing a JIT sequencing problem with multiple objectives. Artif Intell Eng 15:309–317
Miettinen K (1999) Nonlinear multiobjective optimization. Kluwer, Boston
Mostaghim S, Teich J (2003) Strategies for finding good local guides in multi-objective particle swarm optimization (MOPSO). In: Proceedings of the 2003 IEEE symposium on swarm intelligence, Indianapolis. IEEE, Piscataway, pp 26–33
Obayashi S, Deb K, Poloni C, Hiroyasu T, Murata T (eds) (2007) Proceedings of the EMO-2007, Matsushima. LNCS 4403. Springer, Berlin
Osyczka A (2002) Evolutionary algorithms for single and multicriteria design optimization. Physica-Verlag, Heidelberg
Parks G, Suppapitnarm A (1999) Multiobjective optimization of PWR reload core designs using simulated annealing. In: Aragonès JM (eds) Mathematics and computation, reactor physics and environmental analysis in nuclear applications, vol 2. Senda Editorial, Madrid, pp 1435–1444
Rudolph G (1998) Evolutionary search for minimal elements in partially ordered finite sets. In: Proceedings of the 7th annual conference on evolutionary programming, San Diego. Springer, Berlin, pp 345–353
Rudolph G, Agapie A (2000) Convergence properties of some multi-objective evolutionary algorithms. In: Proceedings of the CEC 2000, San Diego, pp 1010–1016
Saxena D, Duro JA, Tiwari A, Deb K, Zhang Q (2013) Objective reduction in many-objective optimization: linear and nonlinear algorithms. IEEE Trans Evol Comput 17(1):77–99
Sharma D, Collet P (2010) GPGPU compatible archive based stochastic ranking evolutionary algorithm (G-ASREA) for multi-objective optimization. In: Proceedings of the PPSN-2010, Kraków. Springer, Berlin, pp 111–120
Srinivas N, Deb K (1994) Multi-objective function optimization using non-dominated sorting genetic algorithms. Evol Comput J 2:221–248
Surry PD, Radcliffe NJ, Boyd ID (1995) A multi-objective approach to constrained optimization of gas supply networks: the COMOGA method. In: Evolutionary computing. AISB workshop, Sheffield. Springer, Berlin, pp 166–180
Takahashi RHC, Deb K, Wanner EF, Greco S (2011) Proceedings of the EMO-2011, Ouro Preto. LNCS 6576. Springer, Berlin
Tzeng GH, Huang J-J (2011) Multiple attribute decision making: methods and applications. CRC, Boca Raton
Veldhuizen DV, Lamont GB (2000) Multiobjective evolutionary algorithms: analyzing the state-of-the-art. Evol Comput J 8:125–148
While L, Hingston P, Barone L, Huband S (2006) A faster algorithm for calculating hypervolume. IEEE Trans Evol Comput 10:29–38
Wong ML (2009) Parallel multi-objective evolutionary algorithms on graphics processing units. In: Proceedings of the GECCO-2009, Montreal, pp 2515–2522
Zhang Q, Li H (2007) MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans Evol Comput 11:712–731
Zhang Q, Zhou A, Zhao SZ, Suganthan PN, Liu W, Tiwari S (2008) Multiobjective optimization test instances for the CEC-2009 special session and competition. Technical report, Nanyang Technological University, Singapore
Zitzler E (1999) Evolutionary agorithms for multiobjective optimization: methods and applications. PhD thesis, Swiss Federal Institute of Technology ETH, Zürich
Zitzler E, Künzli S (2004) Indicator-based selection in multiobjective search. In: Proceedings of the PPSN VIII, Birmingham. LNCS 3242. Springer, Berlin, pp 832–842
Zitzler E, Thiele L (1998) An evolutionary algorithm for multiobjective optimization: the strength Pareto approach. Technical report 43, Computer Engineering and Networks Laboratory, Switzerland
Zitzler E, Thiele L (1999) Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans Evol Comput 3:257–271
Zitzler E, Deb K, Thiele L, Coello CAC, Corne DW (2001a) Proceedings of the EMO-2001, Zurich. LNCS 1993. Springer, Berlin
Zitzler E, Laumanns M, Thiele L (2001b) SPEA2: improving the strength Pareto evolutionary algorithm for multiobjective optimization. In: Giannakoglou KC, Tsahalis DT, Périaux J, Papailiou KD, Fogarty T (eds) Evolutionary methods for design optimization and control with applications to industrial problems, Athens. International Center for Numerical Methods in Engineering (CIMNE), pp 95–100
Zitzler E, Thiele L, Laumanns M, Fonseca CM, da Fonseca VG (2003) Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans Evol Comput 7:117–132
Zitzler E, Thiele L, Bader J (2010) On set-based multiobjective optimization. IEEE Trans Evol Comput 14:58–79
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer Science+Business Media New York
About this chapter
Cite this chapter
Deb, K., Deb, K. (2014). Multi-objective Optimization. In: Burke, E., Kendall, G. (eds) Search Methodologies. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-6940-7_15
Download citation
DOI: https://doi.org/10.1007/978-1-4614-6940-7_15
Published:
Publisher Name: Springer, Boston, MA
Print ISBN: 978-1-4614-6939-1
Online ISBN: 978-1-4614-6940-7
eBook Packages: Business and EconomicsBusiness and Management (R0)