[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Multi-objective Optimization

  • Chapter
  • First Online:
Search Methodologies
  • 152k Accesses

Abstract

Multi-objective optimization is an integral part of optimization activities and has a tremendous practical importance, since almost all real-world optimization problems are ideally suited to be modeled using multiple conflicting objectives. The classical means of solving such problems were primarily focused on scalarizing multiple objectives into a single objective, whereas the evolutionary means have been to solve a multi-objective optimization problem as it is. In this chapter, we discuss the fundamental principles of multi-objective optimization, the differences between multi-objective optimization and single-objective optimization, and describe a few well-known classical and evolutionary algorithms for multi-objective optimization. Two application case studies reveal the importance of multi-objective optimization in practice. A number of research challenges are then highlighted. The chapter concludes by suggesting a few tricks of the trade and mentioning some key resources to the field of multi-objective optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 79.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 99.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Babu B, Jehan ML (2003) Differential evolution for multi-objective optimization. In: Proceedings of the CEC’2003, Canberra, vol 4. IEEE, Piscataway, pp 2696–2703

    Google Scholar 

  • Bader J, Deb K, Zitzler E (2010) Faster hypervolume-based search using Monte Carlo sampling. In: Proceedings of the MCDM 2008, Auckland. LNEMS 634. Springer, Heidelberg, pp 313–326

    Google Scholar 

  • Bagchi T (1999) Multiobjective scheduling by genetic algorithms. Kluwer, Boston

    Book  Google Scholar 

  • Balicki J, Kitowski Z (2001) Multicriteria evolutionary algorithm with tabu search for task assignment. In: Proceedings of the EMO-01, Zurich, pp 373–384

    Google Scholar 

  • Bandaru S, Deb K (2010) Automated discovery of vital knowledge from pareto-optimal solutions: first results from engineering design. In: Proceedings of the WCCI-2010, Barcelona. IEEE, Piscataway

    Google Scholar 

  • Bandaru S, Deb K (2011a) Automated innovization for simultaneous discovery of multiple rules in bi-objective problems. In: Proceedings of the EMO-2011, Ouro Preto. Springer, Heidelberg, pp 1–15

    Google Scholar 

  • Bandaru S, Deb K (2011b) Towards automating the discovery of certain innovative design principles through a clustering based optimization technique. Eng Optim 43:911–941

    Article  Google Scholar 

  • Bandyopadhyay S, Saha S, Maulik U, Deb K (2008) A simulated annealing-based multiobjective optimization algorithm: Amosa. IEEE Trans Evol Comput 12:269–283

    Article  Google Scholar 

  • Belton V, Stewart TJ (2002) Multiple criteria decision analysis: an integrated approach. Kluwer, Boston

    Book  Google Scholar 

  • Bleuler S, Brack M, Zitzler E (2001) Multiobjective genetic programming: reducing bloat using SPEA2. In: Proceedings of the CEC-2001, Seoul, pp 536–543

    Google Scholar 

  • Bradstreet L, While L, Barone L (2008) A fast incremental hypervolume algorithm. IEEE Trans Evol Comput 12:714–723

    Article  Google Scholar 

  • Branke J (2001) Evolutionary optimization in dynamic environments. Springer, Heidelberg

    Google Scholar 

  • Branke J, Greco S, Slowinski R, Zielniewicz P (2009) Interactive evolutionary multiobjective optimization using robust ordinal regression. In: Proceedings of the EMO-09, Nantes. Springer, Berlin, pp 554–568

    Google Scholar 

  • Brockhoff D, Zitzler E (2006) Are all objectives necessary? On dimensionality reduction in evolutionary multiobjective optimization. In: PPSN IX, Reykjavik. LNCS 4193, pp 533–542

    Google Scholar 

  • Brockhoff D, Zitzler E (2007) Dimensionality reduction in multiobjective optimization: the minimum objective subset problem. In: Waldmann KH, Stocker UM (eds) OR proceedings 2006, Karlsruhe, Germany. Springer, Berlin, pp 423–429

    Google Scholar 

  • Chankong V, Haimes YY (1983) Multiobjective decision making theory and methodology. North-Holland, New York

    Google Scholar 

  • Chattopadhyay A, Seeley C (1994) A simulated annealing technique for multiobjective optimization of intelligent structures. Smart Mater Struct 3:98–106

    Article  Google Scholar 

  • Coello CAC (2000) Treating objectives as constraints for single objective optimization. Eng Optim 32:275–308

    Article  Google Scholar 

  • Coello CAC (2003) http://www.lania.mx/~ccoello/EMOO/

  • Coello CAC, Lamont GB (2004) Applications of multi-objective evolutionary algorithms. World Scientific, Singapore

    Book  Google Scholar 

  • Coello CAC, Lechuga MS (2002) MOPSO: a proposal for multiple objective particle swarm optimization. In: Proceedings of the CEC 2002, vol 2. IEEE, Piscataway, Honolulu, USA, pp. 1051–1056

    Google Scholar 

  • Coello CAC, Toscano G (2000) A micro-genetic algorithm for multi-objective optimization. Technical report Lania-RI-2000–06, Laboratoria Nacional de Informatica Avanzada, Xalapa, Veracruz

    Google Scholar 

  • Coello CAC, Van Veldhuizen DA, Lamont G (2002) Evolutionary algorithms for solving multi-objective problems. Kluwer, Boston

    Book  Google Scholar 

  • Coello CAC, Aguirre AH, Zitzler E (eds) (2005) Evolutionary multi-criterion optimization (EMO-2005). LNCS 3410. Springer, Berlin

    Google Scholar 

  • Collette Y, Siarry P (2004) Multiobjective optimization: principles and case studies. Springer, Berlin

    Book  Google Scholar 

  • Cormen TH, Leiserson CE, Rivest RL (1990) Introduction to algorithms. Prentice-Hall, New Delhi

    Google Scholar 

  • Corne DW, Knowles JD (2007) Techniques for highly multiobjective optimization: some nondominated points are better than others. In: Proceedings of the GECCO-07, London. ACM, New York, pp 773–780

    Google Scholar 

  • Corne DW, Knowles JD, Oates M (2000) The Pareto envelope-based selection algorithm for multiobjective optimization. In: Proceedings of the PPSN-VI, Paris, pp 839–848

    Google Scholar 

  • Coverstone-Carroll V, Hartmann JW, Mason WJ (2000) Optimal multi-objective low-thurst spacecraft trajectories. Comput Methods Appl Mech Eng 186:387–402

    Article  Google Scholar 

  • Deb K (1995) Optimization for engineering design: algorithms and examples. Prentice-Hall, New Delhi

    Google Scholar 

  • Deb K (1999) Solving goal programming problems using multi-objective genetic algorithms. In: Proceedings of the CEC, Washington, pp 77–84

    Google Scholar 

  • Deb K (2001) Multi-objective optimization using evolutionary algorithms. Wiley, Chichester

    Google Scholar 

  • Deb K (2003) Unveiling innovative design principles by means of multiple conflicting objectives. Eng Optim 35:445–470

    Article  Google Scholar 

  • Deb K, Datta R (2010) A fast and accurate solution of constrained optimization problems using a hybrid bi-objective and penalty function approach. In: Proceedings of the IEEE WCCI 2010, Barcelona, pp 165–172

    Google Scholar 

  • Deb K, Jain S (2002) Running performance metrics for evolutionary multi-objective optimization. In: Proceedings of the 4th Asia-Pacific conference on simulated evolution and learning (SEAL-02), Singapore, pp 13–20

    Google Scholar 

  • Deb K, Jain S (2003) Multi-speed gearbox design using multi-objective evolutionary algorithms. ASME Trans Mech Des 125:609–619

    Article  Google Scholar 

  • Deb K, Jain H (2012) Handling many-objective problems using an improved NSGA-II procedure. In: Proceedings of the CEC 2012, Brisbane

    Google Scholar 

  • Deb K, Kumar A (2007a) Interactive evolutionary multi-objective optimization and decision-making using reference direction method. In: Proceedings of the GECCO 2007, London. ACM, New York, pp 781–788

    Google Scholar 

  • Deb K, Kumar A (2007b) Light beam search based multi-objective optimization using evolutionary algorithms. In: Proceedings of the CEC-07, Singapore, pp 2125–2132

    Google Scholar 

  • Deb K, Saha A (2012) Multimodal optimization using a bi-objective evolutionary algorithms. Evol Comput J 20:27–62

    Article  Google Scholar 

  • Deb K, Saxena D (2006) Searching for Pareto-optimal solutions through dimensionality reduction for certain large-dimensional multi-objective optimization problems. In: Proceedings of the WCCI 2006, Vancouver, pp 3352–3360

    Google Scholar 

  • Deb K, Srinivasan A (2006) Innovization: innovating design principles through optimization. In: Proceedings of the GECCO-2006, Seattle. ACM, New York, pp 1629–1636

    Google Scholar 

  • Deb K, Tiwari S (2004) Multi-objective optimization of a leg mechanism using genetic algorithms. Technical report KanGAL 2004005, Kanpur Genetic Algorithms Laboratory (KanGAL), IIT, Kanpur

    Google Scholar 

  • Deb K, Agrawal S, Pratap A, Meyarivan T (2002) A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6:182–197

    Article  Google Scholar 

  • Deb K, Zope P, Jain A (2003a) Distributed computing of pareto-optimal solutions using multi-objective evolutionary algorithms. In: Proceedings of the EMO-03, Faro. LNCS 2632, pp 535–549

    Google Scholar 

  • Deb K, Mohan M, Mishra S (2003b) Towards a quick computation of well-spread pareto-optimal solutions. In: Proceedings of the EMO-03, Faro. LNCS 2632, pp 222–236

    Google Scholar 

  • Deb K, Jain P, Gupta N, Maji H (2004a) Multi-objective placement of electronic components using evolutionary algorithms. IEEE Trans Compon Packag Technol 27:480–492

    Article  Google Scholar 

  • Deb K, Mitra K, Dewri R, Majumdar S (2004b) Towards a better understanding of the epoxy polymerization process using multi-objective evolutionary computation. Chem Eng Sci 59:4261–4277

    Article  Google Scholar 

  • Deb K, Thiele L, Laumanns M, Zitzler E (2005) Scalable test problems for evolutionary multi-objective optimization. In: Abraham A et al (eds) Evolutionary multiobjective optimization. Springer, London, pp 105–145

    Chapter  Google Scholar 

  • Deb K, Sundar J, Uday N, Chaudhuri S (2006) Reference point based multi-objective optimization using evolutionary algorithms. Int J Comput Intell Res (IJCIR) 2:273–286

    Article  Google Scholar 

  • Deb K, Rao UB, Karthik S (2007) Dynamic multi-objective optimization and decision-making using modified NSGA-II: a case study on hydro-thermal power scheduling bi-objective optimization problems. In: Proceedings of the EMO-2007, Matsushima

    Google Scholar 

  • Deb K, Sinha A, Korhonen P, Wallenius J (2010) An interactive evolutionary multi-objective optimization method based on progressively approximated value functions. IEEE Trans Evol Comput 14:723–739

    Article  Google Scholar 

  • Ehrgott M (2000) Multicriteria optimization. Springer, Berlin

    Book  Google Scholar 

  • Ehrgott M, Fonseca CM, Gandibleux X, Hao JK, Sevaux M (eds) (2009) Proceedings of the EMO-2009, Nantes. LNCS 5467. Springer, Heidelberg

    Google Scholar 

  • Fonseca C, Fleming P, Zitzler E, Deb K, Thiele L (eds) (2003) Proceedings of the EMO-2003, Faro. LNCS 2632. Springer, Heidelberg

    Google Scholar 

  • Giel O (2003) Expected runtimes of a simple multi-objective evolutionary algorithm. In: Proceedings of the CEC-2003, Canberra. IEEE, Piscatway, pp 1918–1925

    Google Scholar 

  • Goh CK, Tan KC (2009) Evolutionary multi-objective optimization in uncertain environments: issues and algorithms. Springer, Berlin

    Google Scholar 

  • Goldberg DE (1989) Genetic algorithms for search, optimization, and machine learning. Addison-Wesley, Reading

    Google Scholar 

  • Gravel M, Price WL, Gagné C (2002) Scheduling continuous casting of aluminum using a multiple objective ant colony optimization metaheuristic. Eur J Oper Res 143:218–229

    Article  Google Scholar 

  • Haimes YY, Lasdon LS, Wismer DA (1971) On a bicriterion formulation of the problems of integrated system identification and system optimization. IEEE Trans Syst Man Cybern 1:296–297

    Article  Google Scholar 

  • Hansen MP (1997) Tabu search in multiobjective optimization: MOTS. Paper presented at MCDM’97, University of Cape Town

    Google Scholar 

  • Huband S, Barone L, While L, Hingston P (2005) A scalable multi-objective test problem toolkit. In: Proceedings of the EMO-2005, Guanajuato. Springer, Berlin

    Google Scholar 

  • Hughes EJ (2005) Evolutionary many-objective optimization: many once or one many? In: Proceedings of the CEC-2005, Edinburgh, pp 222–227

    Google Scholar 

  • Ishibuchi H, Tsukamoto N, Nojima Y (2008) Evolutionary many-objective optimization: a short review. In: Proceedings of the CEC-2008, Hong Kong, pp 2424–2431

    Google Scholar 

  • Jensen MT (2003a) Guiding single-objective optimization using multi-objective methods. In: Raidl G et al (eds) Applications of evolutionary computing. Evoworkshops 2003: EvoBIO, EvoCOP, EvoIASP, EvoMUSART, EvoROB, and EvoSTIM, Essex. LNCS 2611. Springer, Berlin, pp 199–210

    Google Scholar 

  • Jensen MT (2003b) Reducing the run-time complexity of multiobjective EAs. IEEE Trans Evol Comput 7:503–515

    Article  Google Scholar 

  • Khor EF, Tan KC, Lee TH (2001) Tabu-based exploratory evolutionary algorithm for effective multi-objective optimization. In: Proceedings of the EMO-01, Zurich, pp 344–358

    Google Scholar 

  • Knowles JD, Corne DW (2000) Approximating the non-dominated front using the Pareto archived evolution strategy. Evol Comput J 8:149–172

    Article  Google Scholar 

  • Knowles J, Corne D (2007) Quantifying the effects of objective space dimension in evolutionary multiobjective optimization. In: Proceedings of the EMO-2007, Matsushima. LNCS 4403, pp 757–771

    Google Scholar 

  • Knowles JD, Corne DW, Deb K (2008) Multiobjective problem solving from nature. Natural computing series. Springer, Berlin

    Book  Google Scholar 

  • Kumral M (2003) Application of chance-constrained programming based on multi-objective simulated annealing to solve a mineral blending problem. Eng Optim 35:661–673

    Article  Google Scholar 

  • Kung HT, Luccio F, Preparata FP (1975) On finding the maxima of a set of vectors. J Assoc Comput Mach 22:469–476

    Article  Google Scholar 

  • Laumanns M, Thiele L, Deb K, Zitzler E (2002a) Combining convergence and diversity in evolutionary multi-objective optimization. Evol Comput 10:263–282

    Article  Google Scholar 

  • Laumanns M, Thiele L, Zitzler E, Welzl E, Deb K (2002b) Running time analysis of multi-objective evolutionary algorithms on a simple discrete optimization problem. In: Proceedings of the PPSN-VII, Granada, pp 44–53

    Google Scholar 

  • Laumanns M, Thiele L, Zitzler E (2004) Running time analysis of multiobjective evolutionary algorithms on pseudo-Boolean functions. IEEE Trans Evol Comput 8:170–182

    Article  Google Scholar 

  • López JA, Coello Coello CA (2009) Some techniques to deal with many-objective problems. In: Proceedings of the 11th annual conference companion on genetic and evolutionary computation, Montreal. ACM, New York, pp 2693–2696

    Google Scholar 

  • Loughlin DH, Ranjithan S (1997) The neighborhood constraint method: a multiobjective optimization technique. In: Proceedings of the 7th international conference on genetic algorithms, East Lansing, pp 666–673

    Google Scholar 

  • McMullen PR (2001) An ant colony optimization approach to addessing a JIT sequencing problem with multiple objectives. Artif Intell Eng 15:309–317

    Article  Google Scholar 

  • Miettinen K (1999) Nonlinear multiobjective optimization. Kluwer, Boston

    Google Scholar 

  • Mostaghim S, Teich J (2003) Strategies for finding good local guides in multi-objective particle swarm optimization (MOPSO). In: Proceedings of the 2003 IEEE symposium on swarm intelligence, Indianapolis. IEEE, Piscataway, pp 26–33

    Google Scholar 

  • Obayashi S, Deb K, Poloni C, Hiroyasu T, Murata T (eds) (2007) Proceedings of the EMO-2007, Matsushima. LNCS 4403. Springer, Berlin

    Google Scholar 

  • Osyczka A (2002) Evolutionary algorithms for single and multicriteria design optimization. Physica-Verlag, Heidelberg

    Google Scholar 

  • Parks G, Suppapitnarm A (1999) Multiobjective optimization of PWR reload core designs using simulated annealing. In: Aragonès JM (eds) Mathematics and computation, reactor physics and environmental analysis in nuclear applications, vol 2. Senda Editorial, Madrid, pp 1435–1444

    Google Scholar 

  • Rudolph G (1998) Evolutionary search for minimal elements in partially ordered finite sets. In: Proceedings of the 7th annual conference on evolutionary programming, San Diego. Springer, Berlin, pp 345–353

    Google Scholar 

  • Rudolph G, Agapie A (2000) Convergence properties of some multi-objective evolutionary algorithms. In: Proceedings of the CEC 2000, San Diego, pp 1010–1016

    Google Scholar 

  • Saxena D, Duro JA, Tiwari A, Deb K, Zhang Q (2013) Objective reduction in many-objective optimization: linear and nonlinear algorithms. IEEE Trans Evol Comput 17(1):77–99

    Article  Google Scholar 

  • Sharma D, Collet P (2010) GPGPU compatible archive based stochastic ranking evolutionary algorithm (G-ASREA) for multi-objective optimization. In: Proceedings of the PPSN-2010, Kraków. Springer, Berlin, pp 111–120

    Google Scholar 

  • Srinivas N, Deb K (1994) Multi-objective function optimization using non-dominated sorting genetic algorithms. Evol Comput J 2:221–248

    Article  Google Scholar 

  • Surry PD, Radcliffe NJ, Boyd ID (1995) A multi-objective approach to constrained optimization of gas supply networks: the COMOGA method. In: Evolutionary computing. AISB workshop, Sheffield. Springer, Berlin, pp 166–180

    Google Scholar 

  • Takahashi RHC, Deb K, Wanner EF, Greco S (2011) Proceedings of the EMO-2011, Ouro Preto. LNCS 6576. Springer, Berlin

    Google Scholar 

  • Tzeng GH, Huang J-J (2011) Multiple attribute decision making: methods and applications. CRC, Boca Raton

    Google Scholar 

  • Veldhuizen DV, Lamont GB (2000) Multiobjective evolutionary algorithms: analyzing the state-of-the-art. Evol Comput J 8:125–148

    Article  Google Scholar 

  • While L, Hingston P, Barone L, Huband S (2006) A faster algorithm for calculating hypervolume. IEEE Trans Evol Comput 10:29–38

    Article  Google Scholar 

  • Wong ML (2009) Parallel multi-objective evolutionary algorithms on graphics processing units. In: Proceedings of the GECCO-2009, Montreal, pp 2515–2522

    Google Scholar 

  • Zhang Q, Li H (2007) MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans Evol Comput 11:712–731

    Article  Google Scholar 

  • Zhang Q, Zhou A, Zhao SZ, Suganthan PN, Liu W, Tiwari S (2008) Multiobjective optimization test instances for the CEC-2009 special session and competition. Technical report, Nanyang Technological University, Singapore

    Google Scholar 

  • Zitzler E (1999) Evolutionary agorithms for multiobjective optimization: methods and applications. PhD thesis, Swiss Federal Institute of Technology ETH, Zürich

    Google Scholar 

  • Zitzler E, Künzli S (2004) Indicator-based selection in multiobjective search. In: Proceedings of the PPSN VIII, Birmingham. LNCS 3242. Springer, Berlin, pp 832–842

    Google Scholar 

  • Zitzler E, Thiele L (1998) An evolutionary algorithm for multiobjective optimization: the strength Pareto approach. Technical report 43, Computer Engineering and Networks Laboratory, Switzerland

    Google Scholar 

  • Zitzler E, Thiele L (1999) Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans Evol Comput 3:257–271

    Article  Google Scholar 

  • Zitzler E, Deb K, Thiele L, Coello CAC, Corne DW (2001a) Proceedings of the EMO-2001, Zurich. LNCS 1993. Springer, Berlin

    Google Scholar 

  • Zitzler E, Laumanns M, Thiele L (2001b) SPEA2: improving the strength Pareto evolutionary algorithm for multiobjective optimization. In: Giannakoglou KC, Tsahalis DT, Périaux J, Papailiou KD, Fogarty T (eds) Evolutionary methods for design optimization and control with applications to industrial problems, Athens. International Center for Numerical Methods in Engineering (CIMNE), pp 95–100

    Google Scholar 

  • Zitzler E, Thiele L, Laumanns M, Fonseca CM, da Fonseca VG (2003) Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans Evol Comput 7:117–132

    Article  Google Scholar 

  • Zitzler E, Thiele L, Bader J (2010) On set-based multiobjective optimization. IEEE Trans Evol Comput 14:58–79

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalyanmoy Deb .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Deb, K., Deb, K. (2014). Multi-objective Optimization. In: Burke, E., Kendall, G. (eds) Search Methodologies. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-6940-7_15

Download citation

Publish with us

Policies and ethics