[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Multi-Objective Evolutionary Algorithms: Past, Present, and Future

  • Chapter
  • First Online:
Black Box Optimization, Machine Learning, and No-Free Lunch Theorems

Abstract

Evolutionary algorithms have become a popular choice for solving highly complex multi-objective optimization problems in recent years. Multi-objective evolutionary algorithms were originally proposed in the mid-1980s, but it was until the mid-1990s when they started to attract interest from researchers. Today, we have a wide variety of algorithms, and research in this area has become highly specialized. This chapter attempts to provide a general overview of multi-objective evolutionary algorithms, starting from their early origins, then moving in chronological order towards some of the most recent algorithmic developments. In the last part of the chapter, some future research paths on this topic are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 87.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 109.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 109.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The first author maintains the EMOO repository, which currently contains over 12,400 bibliographic references related to evolutionary multi-objective optimization. The EMOO repository is located at: https://emoo.cs.cinvestav.mx.

  2. 2.

    Without loss of generality, we will assume only minimization problems.

  3. 3.

    It is worth indicating that indicator-based archiving was introduced earlier (see [78, 79]).

  4. 4.

    See:http://ls11-www.cs.uni-dortmund.de/rudolph/hypervolume/start http://people.mpi-inf.mpg.de/~tfried/HYP/ http://iridia.ulb.ac.be/~manuel/hypervolume

  5. 5.

    NSGA-III was designed to solve many-objective optimization problems and its use is relatively popular today.

References

  1. Alcayde, A., Banos, R., Gil, C., Montoya, F.G., Moreno-Garcia, J., Gomez, J.: Annealing-tabu PAES: a multi-objective hybrid meta-heuristic. Optimization 60(12), 1473–1491 (2011)

    Article  MathSciNet  Google Scholar 

  2. Alves Ribeiro, V.H., Reynoso-Meza, G.: Multi-objective support vector machines ensemble generation for water quality monitoring. In: 2018 IEEE Congress on Evolutionary Computation (CEC’2018), pp. 608–613. IEEE Press, Rio de Janeiro (2018). ISBN: 978-1-5090-6017-7

    Google Scholar 

  3. Amirahmadi, A., Dastfan, A., Rafiei, M.: Optimal controller design for single-phase PFC rectifiers using SPEA multi-objective optimization. J. Power Electron. 12(1), 104–112 (2012)

    Article  Google Scholar 

  4. Bader, J., Zitzler, E.: HypE: An algorithm for fast hypervolume-based many-objective optimization. Evol. Comput. 19(1), 45–76 (2011)

    Article  Google Scholar 

  5. Berenguer, J.A.M., Coello Coello, C.A.: Evolutionary many-objective optimization based on Kuhn–Munkres’ algorithm. In: Gaspar-Cunha, A.., Antunes, C.H., Coello Coello, C. (eds.) 8th International Conference on Evolutionary Multi-Criterion Optimization, EMO 2015. Springer. Lecture Notes in Computer Science, vol. 9019, pp. 3–17, Guimarães, Portugal (2015)

    Google Scholar 

  6. Beume, N., Fonseca, C.M., Lopez-Ibanez, M., Paquete, L., Vahrenhold, J.: On the complexity of computing the hypervolume indicator. IEEE Trans. Evol. Comput. 13(5), 1075–1082 (2009)

    Article  Google Scholar 

  7. Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: Multiobjective selection based on dominated hypervolume. Eur. J. Oper. Res. 181(3), 1653–1669 (2007)

    Article  MATH  Google Scholar 

  8. Blumel, A.L., Hughes, E.J., White, B.A.: Fuzzy autopilot design using a multiobjective evolutionary algorithm. In: 2000 IEEE Congress on Evolutionary Computation, vol. 1, pp. 54–61. IEEE Service Center, Piscataway (2000)

    Google Scholar 

  9. Bora, T.C., Lebensztajn, L., Coelho, L.D.S.: Non-dominated sorting genetic algorithm based on reinforcement learning to optimization of broad-band reflector antennas satellite. IEEE Trans. Magn. 48(2), 767–770 (2012)

    Article  Google Scholar 

  10. Bouter, A., Alderliesten, T., Bel, A., Witteveen, C., Bosman, P.A.N.: Large-scale parallelization of partial evaluations in evolutionary algorithms for real-world problems. In: 2018 Genetic and Evolutionary Computation Conference (GECCO’2018), pp. 1199–1206. ACM Press, Kyoto, (2018). ISBN: 978-1-4503-5618-3

    Google Scholar 

  11. Brockhoff, D., Wagner, T., Trautmann, H.: On the properties of the R2 indicator. In: 2012 Genetic and Evolutionary Computation Conference (GECCO’2012), pp. 465–472. ACM Press, Philadelphia (2012). ISBN: 978-1-4503-1177-9

    Google Scholar 

  12. Brockhoff, D., Wagner, T., Trautmann, H.: R2 indicator-based multiobjective search. Evol. Comput. 23(3), 369–395 (2015)

    Article  Google Scholar 

  13. Brockhoff, D., Zitzler, E.: Objective reduction in evolutionary multiobjective optimization: theory and applications. Evol. Comput. 17(2), 135–166 (2009)

    Article  Google Scholar 

  14. Burke, E.K., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., Qu, R.: Hyper-heuristics: a survey of the state of the art. J. Oper. Res. Soc. 64(12), 1695–1724 (2013)

    Article  Google Scholar 

  15. Burke, E.K., Landa Silva, J.D., Soubeiga, E.: Multi-objective hyper-heuristic approaches for space allocation and timetabling. In: Ibaraki, T., Nonobe, K., Yagiura, M. (eds.) Meta-heuristics: Progress as Real Problem Solvers, Selected Papers from the Fifth Metaheuristics International Conference (MIC 2003), pp. 129–158. Springer, Berlin (2005)

    Chapter  Google Scholar 

  16. Cao, B., Zhao, J., Lv, Z., Liu, X., Yang, S., Kang, X., Kang, K.: Distributed parallel particle swarm optimization for multi-objective and many-objective large-scale optimization. IEEE Access 5, 8214–8221 (2017)

    Article  Google Scholar 

  17. Chen, X., Du, W., Qian, F.: Multi-objective differential evolution with ranking-based mutation operator and its application in chemical process optimization. Chemom. Intell. Lab. Syst. 136, 85–96 (2014)

    Article  Google Scholar 

  18. Cheng, R., Jin, Y., Olhofer, M., Sendhoff, B.: Test problems for large-scale multiobjective and many-objective optimization. IEEE Trans. Cybern. 47(12), 4108–4121 (2017)

    Article  Google Scholar 

  19. Coello Coello, C.A.: Treating constraints as objectives for single-objective evolutionary optimization. Eng. Optim. 32(3), 275–308 (2000)

    Article  Google Scholar 

  20. Coello Coello, C.A.: A short tutorial on evolutionary multiobjective optimization. In: Zitzler, E., Deb, K., Thiele, L., Coello, C.A.C., Corne, D. (eds.) First International Conference on Evolutionary Multi-Criterion Optimization. Lecture Notes in Computer Science No. 1993, pp. 21–40. Springer, Berlin (2001)

    Google Scholar 

  21. Coello Coello, C.A., Christiansen, A.D.: Two new GA-based methods for multiobjective optimization. Civil Eng. Syst. 15(3), 207–243 (1998)

    Article  Google Scholar 

  22. Coello Coello, C.A., Lamont, G.B. (eds.): Applications of Multi-Objective Evolutionary Algorithms. World Scientific, Singapore (2004). ISBN 981-256-106-4

    MATH  Google Scholar 

  23. Coello Coello, C.A., Lamont, G.B., Van Veldhuizen, D.A.: Evolutionary Algorithms for Solving Multi-Objective Problems, 2nd edn. Springer, New York (2007). ISBN 978-0-387-33254-3

    MATH  Google Scholar 

  24. Cooper, I.M., John, M.P., Lewis, R., Mumford, C.L., Olden, A.: Optimising large scale public transport network design problems using mixed-mode parallel multi-objective evolutionary algorithms. In: 2014 IEEE Congress on Evolutionary Computation (CEC’2014), pp. 2841–2848. IEEE Press, Beijing (2014). ISBN 978-1-4799-1488-3

    Google Scholar 

  25. Corne, D.W., Knowles, J.D., Oates, M.J.: The Pareto envelope-based selection algorithm for multiobjective optimization. In: Schoenauer, M., Deb, K., Rudolph, G., Yao, X., Lutton, E., Merelo, J.J., Schwefel, H.P. (eds.) Proceedings of the Parallel Problem Solving from Nature VI Conference. Springer. Lecture Notes in Computer Science No. 1917, pp. 839–848, Paris (2000)

    Google Scholar 

  26. Corne, D.W., Jerram, N.R., Knowles, J.D., Oates, M.J.: PESA-II: region-based selection in evolutionary multiobjective optimization. In: Spector, L., Goodman, E.D., Wu, A., Langdon, W., Voigt, H.M., Gen, M. Sen, S., Dorigo, M., Pezeshk, S., Garzon, M.H., Burke, E. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference (GECCO’2001), pp. 283–290. Morgan Kaufmann Publishers, San Francisco (2001)

    Google Scholar 

  27. Dai, L., Zhang, P., Wang, Y., Jiang, D., Dai, H., Mao, J., Wang, M.: Multi-objective optimization of cascade reservoirs using NSGA-II: a case study of the three Gorges-Gezhouba Cascade reservoirs in the Middle Yangtze River, China. Hum. Ecol. Risk Assess. 23(4), 814–835 (2017)

    Article  Google Scholar 

  28. Das, D., Patvardhan, C.: New multi-objective stochastic search technique for economic load dispatch. IEEE Proc. Gener. Transm. Distrib. 145(6), 747–752 (1998)

    Article  Google Scholar 

  29. Das, I., Dennis, J.: A closer look at drawbacks of minimizing weighted sums of objectives for Pareto set generation in multicriteria optimization problems. Struct. Optim. 14(1), 63–69 (1997)

    Article  Google Scholar 

  30. Deb, K.: Solving goal programming problems using multi-objective genetic algorithms. In: 1999 Congress on Evolutionary Computation, pp. 77–84. IEEE Service Center, Washington (1999)

    Google Scholar 

  31. Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints. IEEE Trans. Evol. Comput. 18(4), 577–601 (2014)

    Article  Google Scholar 

  32. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In: Schoenauer, M., Deb, K., Rudolph, G., Yao, X., Lutton, E., Merelo, J.J., Schwefel, H.P. (eds.) Proceedings of the Parallel Problem Solving from Nature VI Conference. Springer. Lecture Notes in Computer Science No. 1917, pp. 849–858, Paris (2000)

    Google Scholar 

  33. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A Fast and Elitist Multiobjective Genetic Algorithm: NSGA–II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  34. Dos Santos, B.C., Neri Nobre, C., Zárate, L.E.: Multi-objective genetic algorithm for feature selection in a protein function prediction context. In: 2018 IEEE Congress on Evolutionary Computation (CEC’2018), pp. 2267–2274. IEEE Press, Rio de Janeiro (2018). ISBN: 978-1-5090-6017-7

    Google Scholar 

  35. Eklund, N.H.W.: Multiobjective visible spectrum optimization: a genetic algorithm approach. Ph.D. thesis, Rensselaer Polytechnic Institute, Troy, New York (2002)

    Google Scholar 

  36. Emmerich, M., Beume, N., Naujoks, B.: An EMO algorithm using the hypervolume measure as selection criterion. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) Evolutionary Multi-Criterion Optimization. Third International Conference, EMO 2005. Springer. Lecture Notes in Computer Science, vol. 3410, pp. 62–76. Guanajuato, México (2005)

    MATH  Google Scholar 

  37. Falcón-Cardona, J.G., Coello Coello, C.A.: A multi-objective evolutionary hyper-heuristic based on multiple indicator-based density estimators. In: 2018 Genetic and Evolutionary Computation Conference (GECCO’2018), pp. 633–640. ACM Press, Kyoto (2018). ISBN: 978-1-4503-5618-3

    Google Scholar 

  38. Fan, Q., Wang, W., Yan, X.: Multi-objective differential evolution with performance-metric-based self-adaptive mutation operator for chemical and qbiochemical dynamic optimization problems. Appl. Soft Comput. 59, 33–44 (2017)

    Article  Google Scholar 

  39. Fang, Y., Liu, Q., Li, M., Laili, Y., Duc Truong, P.: Evolutionary many-objective optimization for mixed-model disassembly line balancing with multi-robotic workstations. Eur. J. Oper. Res. 276(1), 160–174 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  40. Fleischer, M.: The measure of Pareto optima. Applications to multi-objective metaheuristics. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) Evolutionary Multi-Criterion Optimization. Second International Conference, EMO 2003. Lecture Notes in Computer Science, vol. 2632, pp. 519–533. Springer, Faro (2003)

    Google Scholar 

  41. Fogel, L.J.: Artificial Intelligence through Simulated Evolution. John Wiley, New York (1966)

    MATH  Google Scholar 

  42. Fogel, L.J.: Artificial Intelligence Through Simulated Evolution. Forty Years of Evolutionary Programming. Wiley, New York (1999)

    Google Scholar 

  43. Fonseca, C.M., Fleming, P.J.: Genetic algorithms for multiobjective optimization: formulation, discussion and generalization. In: Forrest, S. (ed.) Proceedings of the Fifth International Conference on Genetic Algorithms, pp. 416–423. University of Illinois at Urbana-Champaign, Morgan Kauffman Publishers, San Mateo, California (1993)

    Google Scholar 

  44. Fourman, M.P.: Compaction of symbolic layout using genetic algorithms. In: Genetic Algorithms and their Applications: Proceedings of the First International Conference on Genetic Algorithms, pp. 141–153. Lawrence Erlbaum (1985)

    Google Scholar 

  45. Gacôgne, L.: Research of Pareto Set by Genetic Algorithm, Application to Multicriteria Optimization of Fuzzy Controller. In: Fifth European Congress on Intelligent Techniques and Soft Computing EUFIT’97, pp. 837–845. Aachen (1997)

    Google Scholar 

  46. Gagin, A., Allen, A.J., Levin, I.: Combined fitting of small- and wide-angle X-ray total scattering data from nanoparticles: benefits and issues. J. Appl. Crystallogr. 47, 619–629 (2014)

    Article  Google Scholar 

  47. Garza Fabre, M., Toscano Pulido, G., Coello Coello, C.A.: Ranking methods for many-objective problems. In: Aguirre, A.H., Borja, R.M., García, C.A.R. (eds.) MICAI 2009: Advances in Artificial Intelligence. 8th Mexican International Conference on Artificial Intelligence, pp. 633–645. Springer. Lecture Notes in Artificial Intelligence, vol. 5845. Guanajuato, México (2009)

    Google Scholar 

  48. Goh, C.K., Tan, K.C.: A competitive-cooperative coevolutionary paradigm for dynamic multiobjective optimization. IEEE Trans. Evol. Comput. 13(1), 103–127 (2009)

    Article  Google Scholar 

  49. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Publishing Company, Reading (1989)

    MATH  Google Scholar 

  50. Goldberg, D.E., Richardson, J.: Genetic algorithms with sharing for multimodal function optimization. In: Genetic Algorithms and their Applications: Proceedings of the Second International Conference on Genetic Algorithms, pp. 41–49. Lawrence Erlbaum, Massachusetts (1987). ISBN 0-8058-0158-8

    Google Scholar 

  51. Golshan, A., Ghodsiyeh, D., Izman, S.: Multi-objective optimization of wire electrical discharge machining process using evolutionary computation method: effect of cutting variation. Proc. Inst. Mech. Eng. B J. Eng. Manuf. 229(1), 75–85 (2015)

    Article  Google Scholar 

  52. Guerreiro, A.P., Fonseca, C.M.: Computing and Updating Hypervolume Contributions in up to Four Dimensions. IEEE Trans. Evol. Comput. 22(3), 449–463 (2018)

    Article  Google Scholar 

  53. Hadka, D., Reed, P.: Borg: an auto-adaptive many-objective evolutionary computing framework. Evol. Comput. 21(2), 231–259 (2013)

    Article  Google Scholar 

  54. Hajela, P., Lin, C.Y.: Genetic search strategies in multicriterion optimal design. Struct. Optim. 4, 99–107 (1992)

    Article  Google Scholar 

  55. Harel, M., Matalon-Eisenstadt, E., Moshaiov, A.: Solving multi-objective games using a-priori auxiliary criteria. In: 2017 IEEE Congress on Evolutionary Computation (CEC’2017), pp. 1428–1435. IEEE Press, San Sebastián (2017). ISBN 978-1-5090-4601-0

    Google Scholar 

  56. Hemmat Esfe, M., Razi, P., Hajmohammad, M.H., Rostamian, S.H., Sarsam, W.S., Arani, A.A.A., Dahari, M.: Optimization, modeling and accurate prediction of thermal conductivity and dynamic viscosity of stabilized ethylene glycol and water mixture Al2O3 nanofluids by NSGA-II using ANN. Int. Commun. Heat Mass Transf. 82, 154–160 (2017)

    Article  Google Scholar 

  57. Hernández Gómez, R., Coello Coello, C.A.: Improved metaheuristic based on the r2 indicator for many-objective optimization. In: 2015 Genetic and Evolutionary Computation Conference (GECCO 2015), pp. 679–686. ACM Press, Madrid (2015). ISBN 978-1-4503-3472-3

    Google Scholar 

  58. Hernández Gómez, R., Coello Coello, C.A.: A hyper-heuristic of scalarizing functions. In: 2017 Genetic and Evolutionary Computation Conference (GECCO’2017), pp. 577–584. ACM Press, Berlin (2017). ISBN 978-1-4503-4920-8

    Google Scholar 

  59. Hernández Gómez, R., Coello Coello, C.A., Alba Torres, E.: A multi-objective evolutionary algorithm based on parallel coordinates. In: 2016 Genetic and Evolutionary Computation Conference (GECCO’2016), pp. 565–572. ACM Press, Denver (2016). ISBN 978-1-4503-4206-3

    Google Scholar 

  60. Ho-Huu, V., Hartjes, S., Visser, H.G., Curran, R.: An improved MOEA/D algorithm for bi-objective optimization problems with complex Pareto fronts and its application to structural optimization. Expert Syst. Appl. 92, 430–446 (2018)

    Article  Google Scholar 

  61. Holland, J.H.: Outline for a logical theory of adaptive systems. J. Assoc. Comput. Mach. 9, 297–314 (1962)

    Article  MATH  Google Scholar 

  62. Horn, J., Nafpliotis, N., Goldberg, D.E.: A Niched Pareto genetic algorithm for multiobjective optimization. In: Proceedings of the First IEEE Conference on Evolutionary Computation, IEEE World Congress on Computational Intelligence, vol. 1, pp. 82–87. IEEE Service Center, Piscataway (1994)

    Google Scholar 

  63. Hu, H., Xu, L., Goodman, E.D., Zeng, S.: NSGA-II-based nonlinear PID controller tuning of greenhouse climate for reducing costs and improving performances. Neural Comput. Appl. 24(3–4), 927–936 (2014)

    Article  Google Scholar 

  64. Huang, B., Buckley, B., Kechadi, T.M.: Multi-objective feature selection by using NSGA-II for customer churn prediction in telecommunications. Expert Syst. Appl. 37(5), 3638–3646 (2010)

    Article  Google Scholar 

  65. Hutter, F., Hoos, H.H., Leyton-Brown, K., Stützle, T.: ParamILS: an automatic algorithm configuration framework. J. Artif. Intell. Res. 36, 267–306 (2009)

    Article  MATH  Google Scholar 

  66. Igel, C., Hansen, N., Roth, S.: Covariance matrix adaptation for multi-objective optimization. Evol. Comput. 15(1), 1–28 (2007)

    Article  Google Scholar 

  67. Ikeya, K., Shimoda, M., Shi, J.X.: Multi-objective free-form optimization for shape and thickness of shell structures with composite materials. Compos. Struct. 135, 262–275 (2016)

    Article  Google Scholar 

  68. Ishibuchi, H., Akedo, N., Nojima, Y.: Behavior of multiobjective evolutionary algorithms on many-objective knapsack problems. IEEE Trans. Evol. Comput. 19(2), 264–283 (2015)

    Article  Google Scholar 

  69. Ishibuchi, H., Masuda, H., Tanigaki, Y., Nojima, Y.: Modified distance calculation in generational distance and inverted generational distance. In: Gaspar-Cunha, A., Antunes, C.H., Coello Coello, C. (eds.) Eighth International Conference on Evolutionary Multi-Criterion Optimization, EMO 2015. Lecture Notes in Computer Science, vol. 9019, pp. 110–125. Springer Guimarães (2015)

    Google Scholar 

  70. Ishibuchi, H., Murata, T.: Multi-objective genetic local search algorithm. In: Fukuda, T., Furuhashi, T. (eds.) Proceedings of the 1996 International Conference on Evolutionary Computation, pp. 119–124. IEEE, Nagoya (1996)

    Google Scholar 

  71. Ishibuchi, H., Setoguchi, Y., Masuda, H., Nojima, Y.: Performance of decomposition-based many-objective algorithms strongly depends on Pareto front shapes. IEEE Trans. Evol. Comput. 21(2), 169–190 (2017)

    Article  Google Scholar 

  72. Jaszkiewicz, A.: Improved quick hypervolume algorithm. Comput. Oper. Res. 90, 72–83 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  73. Jiang, M., Huang, Z., Jiang, G., Shi, M., Zeng, X.: Motion generation of multi-legged robot in complex terrains by using estimation of distribution algorithm. In: 2017 IEEE Symposium Series on Computational Intelligence (SSCI’2017), pp. 111–116. IEEE Press, Honolulu (2017). ISBN: 978-1-5386-2727-3

    Google Scholar 

  74. Jin, Y., Okabe, T., Sendhoff, B.: Dynamic weighted aggregation for evolutionary multi-objective optimization: why does it work and how? In: Spector, L., Goodman, E.D., Wu, A., Langdon, W., Voigt, H.M., Gen, M., Sen, S., Dorigo, M., Pezeshk, S., Garzon, M.H., Burke, E. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference (GECCO’2001), pp. 1042–1049. Morgan Kaufmann Publishers, San Francisco (2001)

    Google Scholar 

  75. Karakostas, S.M.: Land-use planning via enhanced multi-objective evolutionary algorithms: optimizing the land value of major greenfield initiatives. J. Land Use Sci. 11(5), 595–617 (2016)

    Article  Google Scholar 

  76. Karakostas, S.M.: Bridging the gap between multi-objective optimization and spatial planning: a new post-processing methodology capturing the optimum allocation of land uses against established transportation infrastructure. Trans. Plan. Technol. 40(3), 305–326 (2017)

    Article  Google Scholar 

  77. Kim, N., Bhalerao, I., Han, D., Yang, C., Lee, H.: Improving surface roughness of additively manufactured parts using a photopolymerization model and multi-objective particle swarm optimization. Appl. Sci. Basel 9(1), 151 (2019). Article Number:151

    Google Scholar 

  78. Knowles, J., Corne, D.: Properties of an adaptive archiving algorithm for storing nondominated vectors. IEEE Trans. Evol. Comput. 7(2), 100–116 (2003)

    Article  Google Scholar 

  79. Knowles, J.D.: Local-Search and Hybrid Evolutionary Algorithms for Pareto Optimization. Ph.D. thesis, The University of Reading, Department of Computer Science, Reading, UK (2002)

    Google Scholar 

  80. Knowles, J.D., Corne, D.W.: Approximating the nondominated front using the Pareto archived evolution strategy. Evol. Comput. 8(2), 149–172 (2000)

    Article  Google Scholar 

  81. Kuhn, H.W.: The Hungarian method for the assignment problem. Naval Res. Logist. Q. 2(1–2), 83–97 (1955). https://doi.org/10.1002/nav.3800020109

    Article  MathSciNet  MATH  Google Scholar 

  82. Kuhn, H.W., Tucker, A.W.: Nonlinear programming. In: Neyman, J. (ed.) Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, pp. 481–492. University of California Press, Berkeley (1951)

    Google Scholar 

  83. Kukkonen, S., Deb, K.: Improved pruning of non-dominated solutions based on crowding distance for bi-objective optimization problems. In: 2006 IEEE Congress on Evolutionary Computation (CEC’2006), pp. 1164–1171. IEEE, Vancouver (2006)

    Google Scholar 

  84. Lacour, R., Klamroth, K., Fonseca, C.M.: A box decomposition algorithm to compute the hypervolume indicator. Comput. Oper. Res. 79, 347–360 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  85. Lepš, M.: Single and multi-objective optimization in civil engineering. In: Annicchiarico, W., Périaux, J., Cerrolaza, M., Winter, G. (eds.) Evolutionary Algorithms and Intelligent Tools in Engineering Optimization, pp. 322–342. WIT Press, CIMNE Barcelona, Southampton, Boston (2005). ISBN 1-84564-038-1

    Google Scholar 

  86. Li, F., Cheng, R., Liu, J., Jin, Y.: A two-stage r2 indicator based evolutionary algorithm for many-objective optimization. Appl. Soft Comput. 67, 245–260 (2018)

    Article  Google Scholar 

  87. Li, H., Deb, K.: Challenges for evolutionary multiobjective optimization algorithms in solving variable-length problems. In: 2017 IEEE Congress on Evolutionary Computation (CEC’2017), pp. 2217–2224. IEEE Press, San Sebastián (2017). ISBN 978-1-5090-4601-0

    Google Scholar 

  88. Li, Z., Zheng, L.: Integrated design of active suspension parameters for solving negative vibration effects of switched reluctance-in-wheel motor electrical vehicles based on multi-objective particle swarm optimization. J. Vibr. Control 25(3), 639–654 (2019)

    Article  MathSciNet  Google Scholar 

  89. Lopez-Herrejon, R.E., Ferrer, J., Chicano, F., Egyed, A., Alba, E.: Comparative analysis of classical multi-objective evolutionary algorithms and seeding strategies for pairwise testing of software product lines. In: 2014 IEEE Congress on Evolutionary Computation (CEC’2014), pp. 387–396. IEEE Press, Beijing (2014). ISBN 978-1-4799-1488-3

    Google Scholar 

  90. Lotfan, S., Ghiasi, R.A., Fallah, M., Sadeghi, M.H.: ANN-based modeling and reducing dual-fuel engine’s challenging emissions by multi-objective evolutionary algorithm NSGA-II. Appl. Energy 175, 91–99 (2016)

    Article  Google Scholar 

  91. Ma, X., Liu, F., Qi, Y., Wang, X., Li, L., Jiao, L., Yin, M., Gong, M.: A multiobjective evolutionary algorithm based on decision variable analyses for multiobjective optimization problems with large-scale variables. IEEE Trans. Evol. Comput. 20(2), 275–298 (2016)

    Article  Google Scholar 

  92. Ma, Y., Zuo, X., Huang, X., Gu, F., Wang, C., Zhao, X.: A MOEA/D based approach for hospital department layout design. In: 2016 IEEE Congress on Evolutionary Computation (CEC’2016), pp. 793–798. IEEE Press, Vancouver (2016). ISBN 978-1-5090-0623-9

    Google Scholar 

  93. Makaremi, Y., Haghighi, A., Ghafouri, H.R.: Optimization of pump scheduling program in water supply systems using a self-adaptive NSGA-II; a review of theory to real application. Water Resour. Manag. 31(4), 1283–1304 (2017)

    Article  Google Scholar 

  94. Manoatl Lopez, E., Coello Coello, C.A.: IGD+-EMOA: a multi-objective evolutionary algorithm based on IGD+. In: 2016 IEEE Congress on Evolutionary Computation (CEC’2016), pp. 999–1006. IEEE Press, Vancouver (2016). ISBN 978-1-5090-0623-9

    Google Scholar 

  95. Manoatl Lopez, E., Coello Coello, C.A.: An improved version of a reference-based multi-objective evolutionary algorithm based on IGD+ . In: 2018 Genetic and Evolutionary Computation Conference (GECCO’2018), pp. 713–720. ACM Press, Kyoto (2018). ISBN: 978-1-4503-5618-3

    Google Scholar 

  96. Marco, N., Lanteri, S., Desideri, J.A., Périaux, J.: A Parallel genetic algorithm for multi-objective optimization in computational fluid dynamics. In: Miettinen, K., Mäkelä, M.M., Neittaanmäki, P., Périaux, J. (eds.) Evolutionary Algorithms in Engineering and Computer Science, chap. 22, pp. 445–456. Wiley, Chichester (1999)

    Google Scholar 

  97. Marcu, T., Ferariu, L., Frank, P.M.: Genetic evolving of dynamic neural networks with application to process fault diagnosis. In: Procedings of the EUCA/IFAC/IEEE European Control Conference ECC’99. CD-ROM, F-1046,1, Karlsruhe (1999)

    Google Scholar 

  98. Mariani, T., Guizzo, G., Vergilio, S.R., Pozo, A.T.: Grammatical evolution for the multi-objective integration and test order problem. In: 2016 Genetic and Evolutionary Computation Conference (GECCO’2016), pp. 1069–1076. ACM Press, Denver (2016). ISBN 978-1-4503-4206-3

    Google Scholar 

  99. Martí, L., García, J., Berlanga, A., Molina, J.M.: Introducing MONEDA: scalable multiobjective optimization with a neural estimation of distribution algorithm. In: 2008 Genetic and Evolutionary Computation Conference (GECCO’2008), pp. 689–696. ACM Press, Atlanta (2008). ISBN 978-1-60558-131-6

    Google Scholar 

  100. Mazumdar, A., Chugh, T., Miettinen, K., nez, M.L.I.: On dealing with uncertainties from kriging models in offline data-driven evolutionary multiobjective optimization. In: Evolutionary Multi-Criterion Optimization, Tenth International Conference, EMO 2019, pp. 463–474. Springer. Lecture Notes in Computer Science, vol. 11411, East Lansing (2019). ISBN: 978-3-030-12597-4

    Google Scholar 

  101. Menchaca-Mendez, A., Coello Coello, C.A.: An alternative hypervolume-based selection mechanism for multi-objective evolutionary algorithms. Soft Comput. 21(4), 861–884 (2017)

    Article  Google Scholar 

  102. Mendes Guimarães, M., Cruzeiro Martins, F.V.: A multiobjective approach applying in a Brazilian emergency medical service. In: 2018 IEEE Congress on Evolutionary Computation (CEC’2018), pp. 1605–1612. IEEE Press, Rio de Janeiro (2018). ISBN: 978-1-5090-6017-7

    Google Scholar 

  103. Mendoza, F., Bernal-Agustin, J.L., Navarro, J.A.D.: NSGA and SPEA applied to multiobjective design of power distribution systems. IEEE Trans. Power Syst. 21(4), 1938–1945 (2006)

    Article  Google Scholar 

  104. Miettinen, K.M.: Nonlinear Multiobjective Optimization. Kluwer Academic Publishers, Boston (1999)

    MATH  Google Scholar 

  105. Miguel Antonio, L., Coello Coello, C.A.: Decomposition-based approach for solving large scale multi-objective problems. In: Handl, J., Hart, E., Lewis, P.R., López-Ibáñez, M., Ochoa, G., Paechter, B. (eds.) 14th International Conference on Parallel Problem Solving from Nature—PPSN XIV, pp. 525–534. Springer. Lecture Notes in Computer Science, vol. 9921, Edinburgh (2016). ISBN 978-3-319-45822-9

    Google Scholar 

  106. Miguel Antonio, L., Coello Coello, C.A.: Coevolutionary multiobjective evolutionary algorithms: survey of the state-of-the-art. IEEE Trans. Evol. Comput. 22(6), 851–865 (2018)

    Article  Google Scholar 

  107. Miguel Antonio, L., Molinet Berenguer, J.A., Coello Coello, C.A.: Evolutionary many-objective optimization based on linear assignment problem transformations. Soft Comput. 22(16), 5491–5512 (2018)

    Article  Google Scholar 

  108. Mishra, S., Coello Coello, C.A.: Parallelism in divide-and-conquer non-dominated sorting: a theoretical study considering the PRAM-CREW model. J. Heuristics 25(3), 455–483 (2019)

    Article  Google Scholar 

  109. Moghadasi, A.H., Heydari, H., Farhadi, M.: Pareto Optimality for the Design of SMES Solenoid Coils Verified by Magnetic Field Analysis. IEEE Trans. Appl. Supercond. 21(1), 13–20 (2011)

    Article  Google Scholar 

  110. Morse, J.: Reducing the size of the nondominated set: pruning by clustering. Comput. Oper. Res. 7(1–2), 55–66 (1980)

    Article  Google Scholar 

  111. Moudani, W.E., Cosenza, C.A.N., de Coligny, M., Mora-Camino, F.: A bi-criterion approach for the airlines crew rostering problem. In: Zitzler, E., Deb, K., Thiele, L., Coello Coello, C.A., Corne, D. (eds.) First International Conference on Evolutionary Multi-Criterion Optimization. Lecture Notes in Computer Science, vol. 1993, pp. 486–500. Springer, Berlin (2001)

    Chapter  Google Scholar 

  112. Muller, J.: SOCEMO: surrogate optimization of computationally expensive multiobjective problems. Informs J. Comput. 29(4), 581–596 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  113. Narayanan, S., Azarm, S.: On improving multiobjective genetic algorithms for design optimization. Struct. Optim. 18, 146–155 (1999)

    Article  Google Scholar 

  114. Lopez-Ibanez, M.L.I., Prasad, T.D., Paechter, B.: Multi-objective optimisation of the pump scheduling problem using SPEA2. In: 2005 IEEE Congress on Evolutionary Computation (CEC’2005), vol. 1, pp. 435–442. IEEE Service Center, Edinburgh (2005)

    Google Scholar 

  115. Arias-Montano, A.A.M., Coello Coello, C.A., Mezura-Montes, E.: Multi-objective evolutionary algorithms in aeronautical and aerospace engineering. IEEE Trans. Evol. Comput. 16(5), 662–694 (2012)

    Article  MATH  Google Scholar 

  116. Ortega, G., Filatovas, E., Garzon, E.M., Casado, L.G.: Non-dominated sorting procedure for pareto dominance ranking on multicore CPU and/or GPU. J. Global Optim. 69(3), 607–627 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  117. Palar, P.S., Shimoyama, K.: Multiple metamodels for robustness estimation in multi-objective robust optimization. In: Evolutionary Multi-Criterion Optimization, Ninth International Conference, EMO 2017, pp. 469–483. Springer. Lecture Notes in Computer Science, vol. 10173, Münster (2017). ISBN 978-3-319-54156-3

    Google Scholar 

  118. Peng, Y., Xue, S., Li, M.: An improved multi-objective optimization algorithm based on NPGA for cloud task scheduling. Int. J. Grid Distrib. Comput. 9(4), 161–176 (2016)

    Article  Google Scholar 

  119. Pescador-Rojas, M., Hernández Gómez, R., Montero, E., Rojas-Morales, N., Riff, M.C., Coello Coello, C.A.: An overview of weighted and unconstrained scalarizing functions. In: Trautmann, H., Rudolph, G., Klamroth, K., Schütze, O., Wiecek, M. Jin, Y., Grimme, C. (eds.) Ninth International Conference on Evolutionary Multi-Criterion Optimization, EMO 2017, pp. 499–513. Springer. Lecture Notes in Computer Science, vol. 10173, Münster (2017). ISBN 978-3-319-54156-3

    Google Scholar 

  120. Praditwong, K., Yao, X.: How well do multi-objective evolutionary algorithms scale to large problems. In: 2007 IEEE Congress on Evolutionary Computation (CEC’2007), pp. 3959–3966. IEEE Press, Singapore (2007)

    Google Scholar 

  121. Quintana, D., Denysiuk, R., Garcia-Rodriguez, S., Gaspar-Cunha, A.: Portfolio implementation risk management using evolutionary multiobjective optimization. Appl. Sci. Basel 7(10), 1079 (2017). Article Number: 1079

    Google Scholar 

  122. Rabiee, M., Zandieh, M., Ramezani, P.: Bi-objective partial flexible job shop scheduling problem: NSGA-II, NRGA, MOGA and PAES approaches. Int. J. Prod. Res. 50(24), 7327–7342 (2012)

    Article  Google Scholar 

  123. Roberge, V., Tarbouchi, M., Labonte, G.: Comparison of parallel genetic algorithm and particle swarm optimization for real-time UAV path planning. IEEE Trans. Ind. Inform. 9(1), 132–141 (2013)

    Article  Google Scholar 

  124. Rocha, G.K., dos Santos, K.B., Angelo, J.S., Custódio, F.L., Barbosa, H.J.C., Dardenne, L.E.: Inserting co-evolution information from contact maps into a multiobjective genetic algorithm for protein structure prediction. In: 2018 IEEE Congress on Evolutionary Computation (CEC’2018), pp. 957–964. IEEE Press, Rio de Janeiro (2018). ISBN: 978-1-5090-6017-7

    Google Scholar 

  125. Rosenberg, R.S.: Simulation of genetic populations with biochemical properties. Ph.D. thesis, University of Michigan, Ann Arbor, Michigan (1967)

    Google Scholar 

  126. Rubaiee, S., Yildirim, M.B.: An energy-aware multiobjective ant colony algorithm to minimize total completion time and energy cost on a single-machine preemptive scheduling. Comput. Ind. Eng. 127, 240–252 (2019)

    Article  Google Scholar 

  127. Rudolph, G., Agapie, A.: Convergence properties of some multi-objective evolutionary algorithms. In: Proceedings of the 2000 Conference on Evolutionary Computation, vol. 2, pp. 1010–1016. IEEE Press, Piscataway (2000)

    Google Scholar 

  128. Sadowski, K.L., van der Meer, M.C., Hoang Luong, N., Alderliesten, T., Thierens, D., van der Laarse, R., Niatsetski, Y., Bel, A., Bosman, P.A.N.: Exploring trade-offs between target coverage, healthy tissue sparing, and the placement of catheters in HDR brachytherapy for prostate cancer using a novel multi-objective model-based mixed-integer evolutionary algorithm. In: 2017 Genetic and Evolutionary Computation Conference (GECCO’2017), pp. 1224–1231. ACM Press, Berlin (2017). ISBN 978-1-4503-4920-8

    Google Scholar 

  129. Sandgren, E.: Multicriteria design optimization by goal programming. In: Adeli, H. (ed.) Advances in Design Optimization, chap. 23, pp. 225–265. Chapman & Hall, London (1994)

    Google Scholar 

  130. Sanhueza, C., Jiménez, F., Berretta, R., Moscato, P.: PasMoQAP: a parallel asynchronous memetic algorithm for solving the multi-objective quadratic assignment problem. In: 2017 IEEE Congress on Evolutionary Computation (CEC’2017), pp. 1103–1110. IEEE Press, San Sebastián (2017). ISBN 978-1-5090-4601-0

    Google Scholar 

  131. Santiago, A., Huacuja, H.J.F., Dorronsoro, B., Pecero, J.E., Santillan, C.G., Barbosa, J.J.G., Monterrubio, J.C.S.: A survey of decomposition methods for multi-objective optimization. In: Castillo, O., Melin, P., Pedrycz, W., Kacprzyk, J. (eds.) Recent Advances on Hybrid Approaches for Designing Intelligent Systems, pp. 453–465. Springer, Berlin (2014). ISBN 978-3-319-05170-3

    Chapter  Google Scholar 

  132. Saxena, D.K., ao A. Duro, J., Tiwari, A., Deb, K., Zhang, Q.: Objective reduction in many-objective optimization: linear and nonlinear algorithms. IEEE Trans. Evol. Comput. 17(1), 77–99 (2013)

    Google Scholar 

  133. Schaffer, J.D.: Multiple Objective Optimization with Vector Evaluated Genetic Algorithms. Ph.D. thesis, Vanderbilt University, Nashville, Tennessee, USA (1984)

    Google Scholar 

  134. Schaffer, J.D.: Multiple objective optimization with vector evaluated genetic algorithms. In: Genetic Algorithms and their Applications: Proceedings of the First International Conference on Genetic Algorithms, pp. 93–100. Lawrence Erlbaum, London (1985)

    Google Scholar 

  135. Schütze, O., Lara, A., Coello Coello, C.A.: On the influence of the number of objectives on the hardness of a multiobjective optimization problem. IEEE Trans. Evol. Comput. 15(4), 444–455 (2011)

    Article  Google Scholar 

  136. Schwefel, H.P.: Kybernetische evolution als strategie der experimentellen forschung inder strömungstechnik. Dipl.-Ing. thesis (1965) (in German)

    Google Scholar 

  137. Schwefel, H.P.: Numerical Optimization of Computer Models. Wiley, Chichester (1981)

    MATH  Google Scholar 

  138. Song, J., Yang, Y., Wu, J., Wu, J., Sun, X., Lin, J.: Adaptive surrogate model based multiobjective optimization for coastal aquifer management. J. Hydrol. 561, 98–111 (2018)

    Article  Google Scholar 

  139. Srinivas, N., Deb, K.: Multiobjective optimization using nondominated sorting in genetic algorithms. Evol. Comput. 2(3), 221–248 (1994)

    Article  Google Scholar 

  140. Toscano Pulido, G., Coello Coello, C.A.: The micro genetic algorithm 2: towards online adaptation in evolutionary multiobjective optimization. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) Second International Conference on Evolutionary Multi-Criterion Optimization, EMO 2003, pp. 252–266. Springer. Lecture Notes in Computer Science, vol. 2632, Faro (2003)

    Google Scholar 

  141. Tušar, T., Filipič, B.: Visualization of Pareto front approximations in evolutionary multiobjective optimization: a critical review and the prosection method. IEEE Trans. Evol. Comput. 19(2), 225–245 (2015)

    Article  Google Scholar 

  142. Vazquez-Rodriguez, J.A., Petrovic, S.: A new dispatching rule based genetic algorithm for the multi-objective job shop problem. J. Heuristics 16(6), 771–793 (2010)

    Article  MATH  Google Scholar 

  143. Vrugt, J.A., Robinson, B.A.: Improved evolutionary optimization from genetically adaptive multimethod search. Proc. Nat. Acad. Sci. U.S.A. 104(3), 708–711 (2007)

    Article  Google Scholar 

  144. Walker, D.J., Keedwell, E.: Multi-objective optimisation with a sequence-based selection hyper-heuristic. In: Proceedings of the 2016 on Genetic and Evolutionary Computation Conference Companion, pp. 81–82. ACM Press, New York (2016)

    Google Scholar 

  145. Wang, L., Li, L.P.: Fixed-structure h-infinity controller synthesis based on differential evolution with level comparison. IEEE Trans. Evol. Comput. 15(1), 120–129 (2011)

    Article  MathSciNet  Google Scholar 

  146. Wang, Q., Guidolin, M., Savic, D., Kapelan, Z.: Two-objective design of benchmark problems of a water distribution system via MOEAs: towards the best-known approximation of the true Pareto front. J. Water Resour. Plan. Manag. 141(3), 04014060 (2015)

    Article  Google Scholar 

  147. Wang, S., Hua, D., Zhang, Z., Li, M., Yao, K., Wen, Z.: Robust controller design for main steam pressure based on SPEA2. In: Huang, D.S., Gan, Y., Premaratne, P., Han, K. (eds.) Bio-Inspired Computing and Applications, Seventh International Conference on Intelligent Computing, ICIC 2011, pp. 176–182. Springer. Lecture Notes in Computer Science, vol. 6840, Zhengzhou (2012)

    Google Scholar 

  148. Weile, D.S., Michielssen, E.: Integer coded Pareto genetic algorithm design of constrained antenna arrays. Electron. Lett. 32(19), 1744–1745 (1996)

    Article  Google Scholar 

  149. Wienke, P.B., Lucasius, C., Kateman, G.: Multicriteria target optimization of analytical procedures using a genetic algorithm. Anal. Chim. Acta 265(2), 211–225 (1992)

    Article  Google Scholar 

  150. Wilson, P.B., Macleod, M.D.: Low implementation cost IIR digital filter design using genetic algorithms. In: IEE/IEEE Workshop on Natural Algorithms in Signal Processing, pp. 4/1–4/8. Chelmsford (1993)

    Google Scholar 

  151. Yang, D., Sun, Y., di Stefano, D., Turrin, M., Sariyildiz, S.: Impacts of problem scale and sampling strategy on surrogate model accuracy. An application of surrogate-based optimization in building design. In: 2016 IEEE Congress on Evolutionary Computation (CEC’2016), pp. 4199–4207. IEEE Press, Vancouver (2016). ISBN 978-1-5090-0623-6

    Google Scholar 

  152. Yang, W., Chen, Y., He, R., Chang, Z., Chen, Y.: The bi-objective active-scan agile earth observation satellite scheduling problem: modeling and solution approach. In: 2018 IEEE Congress on Evolutionary Computation (CEC’2018), pp. 1083–1090. IEEE Press, Rio de Janeiro (2018). ISBN: 978-1-5090-6017-7

    Google Scholar 

  153. Ye, C.J., Huang, M.X.: Multi-objective optimal power flow considering transient stability based on parallel NSGA-II. IEEE Trans. Power Syst. 30(2), 857–866 (2015)

    Article  Google Scholar 

  154. Ye, X., Liu, S., Yin, Y., Jin, Y.: User-oriented many-objective cloud workflow scheduling based on an improved knee point driven evolutionary algorithm. Knowl. Based Syst. 135, 113–124 (2017)

    Article  Google Scholar 

  155. Zebulum, R.S., Pacheco, M.A., Vellasco, M.: A multi-objective optimisation methodology applied to the synthesis of low-power operational amplifiers. In: Cheuri, I.J., dos Reis Filho, C.A. (eds.) Proceedings of the XIII International Conference in Microelectronics and Packaging, vol. 1, pp. 264–271. Curitiba (1998)

    Google Scholar 

  156. Zhang, C., Chen, Y., Shi, M., Peterson, G.: Optimization of heat pipe with axial “Omega”-shaped micro grooves based on a niched Pareto genetic algorithm (NPGA). Appl. Thermal Eng. 29(16), 3340–3345 (2009)

    Article  Google Scholar 

  157. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

    Article  Google Scholar 

  158. Zhang, X., Tian, Y., Cheng, R., Jin, Y.: A decision variable clustering-based evolutionary algorithm for large-scale many-objective optimization. IEEE Trans. Evol. Comput. 22(1), 97–112 (2018)

    Article  Google Scholar 

  159. Zille, H., Ishibuchi, H., Mostaghim, S., Nojima, Y.: A framework for large-scale multiobjective optimization based on problem transformation. IEEE Trans. Evol. Comput. 22(2), 260–275 (2018)

    Article  Google Scholar 

  160. Zitzler, E.: Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications. Ph.D. thesis, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland (1999)

    Google Scholar 

  161. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms on test functions of different difficulty. In: Wu, A.S. (ed.) Proceedings of the 1999 Genetic and Evolutionary Computation Conference. Workshop Program, pp. 121–122. Orlando, Florida (1999)

    Google Scholar 

  162. Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In: X.Y. et al. (ed.) Parallel Problem Solving from Nature—PPSN VIII, pp. 832–842. Springer. Lecture Notes in Computer Science, vol. 3242, Birmingham, UK (2004)

    Google Scholar 

  163. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: improving the strength pareto evolutionary algorithm. In: Giannakoglou, K., Tsahalis, D., Periaux, J., Papailou, P., Fogarty, T. (eds.) EUROGEN 2001. Evolutionary Methods for Design, Optimization and Control with Applications to Industrial Problems, pp. 95–100. Athens, Greece (2001)

    Google Scholar 

  164. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., da Fonseca, V.G.: Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans. Evol. Comput. 7(2), 117–132 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

The first author acknowledges support from CONACyT project no. 2016-01-1920 (Investigación en Fronteras de la Ciencia 2016) and from a project from the 2018 SEP-Cinvestav Fund (application no. 4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos A. Coello Coello .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Coello, C.A.C., Brambila, S.G., Gamboa, J.F., Tapia, M.G.C. (2021). Multi-Objective Evolutionary Algorithms: Past, Present, and Future. In: Pardalos, P.M., Rasskazova, V., Vrahatis, M.N. (eds) Black Box Optimization, Machine Learning, and No-Free Lunch Theorems. Springer Optimization and Its Applications, vol 170. Springer, Cham. https://doi.org/10.1007/978-3-030-66515-9_5

Download citation

Publish with us

Policies and ethics