Abstract
Evolutionary algorithms have become a popular choice for solving highly complex multi-objective optimization problems in recent years. Multi-objective evolutionary algorithms were originally proposed in the mid-1980s, but it was until the mid-1990s when they started to attract interest from researchers. Today, we have a wide variety of algorithms, and research in this area has become highly specialized. This chapter attempts to provide a general overview of multi-objective evolutionary algorithms, starting from their early origins, then moving in chronological order towards some of the most recent algorithmic developments. In the last part of the chapter, some future research paths on this topic are briefly discussed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The first author maintains the EMOO repository, which currently contains over 12,400 bibliographic references related to evolutionary multi-objective optimization. The EMOO repository is located at: https://emoo.cs.cinvestav.mx.
- 2.
Without loss of generality, we will assume only minimization problems.
- 3.
- 4.
- 5.
NSGA-III was designed to solve many-objective optimization problems and its use is relatively popular today.
References
Alcayde, A., Banos, R., Gil, C., Montoya, F.G., Moreno-Garcia, J., Gomez, J.: Annealing-tabu PAES: a multi-objective hybrid meta-heuristic. Optimization 60(12), 1473–1491 (2011)
Alves Ribeiro, V.H., Reynoso-Meza, G.: Multi-objective support vector machines ensemble generation for water quality monitoring. In: 2018 IEEE Congress on Evolutionary Computation (CEC’2018), pp. 608–613. IEEE Press, Rio de Janeiro (2018). ISBN: 978-1-5090-6017-7
Amirahmadi, A., Dastfan, A., Rafiei, M.: Optimal controller design for single-phase PFC rectifiers using SPEA multi-objective optimization. J. Power Electron. 12(1), 104–112 (2012)
Bader, J., Zitzler, E.: HypE: An algorithm for fast hypervolume-based many-objective optimization. Evol. Comput. 19(1), 45–76 (2011)
Berenguer, J.A.M., Coello Coello, C.A.: Evolutionary many-objective optimization based on Kuhn–Munkres’ algorithm. In: Gaspar-Cunha, A.., Antunes, C.H., Coello Coello, C. (eds.) 8th International Conference on Evolutionary Multi-Criterion Optimization, EMO 2015. Springer. Lecture Notes in Computer Science, vol. 9019, pp. 3–17, Guimarães, Portugal (2015)
Beume, N., Fonseca, C.M., Lopez-Ibanez, M., Paquete, L., Vahrenhold, J.: On the complexity of computing the hypervolume indicator. IEEE Trans. Evol. Comput. 13(5), 1075–1082 (2009)
Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: Multiobjective selection based on dominated hypervolume. Eur. J. Oper. Res. 181(3), 1653–1669 (2007)
Blumel, A.L., Hughes, E.J., White, B.A.: Fuzzy autopilot design using a multiobjective evolutionary algorithm. In: 2000 IEEE Congress on Evolutionary Computation, vol. 1, pp. 54–61. IEEE Service Center, Piscataway (2000)
Bora, T.C., Lebensztajn, L., Coelho, L.D.S.: Non-dominated sorting genetic algorithm based on reinforcement learning to optimization of broad-band reflector antennas satellite. IEEE Trans. Magn. 48(2), 767–770 (2012)
Bouter, A., Alderliesten, T., Bel, A., Witteveen, C., Bosman, P.A.N.: Large-scale parallelization of partial evaluations in evolutionary algorithms for real-world problems. In: 2018 Genetic and Evolutionary Computation Conference (GECCO’2018), pp. 1199–1206. ACM Press, Kyoto, (2018). ISBN: 978-1-4503-5618-3
Brockhoff, D., Wagner, T., Trautmann, H.: On the properties of the R2 indicator. In: 2012 Genetic and Evolutionary Computation Conference (GECCO’2012), pp. 465–472. ACM Press, Philadelphia (2012). ISBN: 978-1-4503-1177-9
Brockhoff, D., Wagner, T., Trautmann, H.: R2 indicator-based multiobjective search. Evol. Comput. 23(3), 369–395 (2015)
Brockhoff, D., Zitzler, E.: Objective reduction in evolutionary multiobjective optimization: theory and applications. Evol. Comput. 17(2), 135–166 (2009)
Burke, E.K., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., Qu, R.: Hyper-heuristics: a survey of the state of the art. J. Oper. Res. Soc. 64(12), 1695–1724 (2013)
Burke, E.K., Landa Silva, J.D., Soubeiga, E.: Multi-objective hyper-heuristic approaches for space allocation and timetabling. In: Ibaraki, T., Nonobe, K., Yagiura, M. (eds.) Meta-heuristics: Progress as Real Problem Solvers, Selected Papers from the Fifth Metaheuristics International Conference (MIC 2003), pp. 129–158. Springer, Berlin (2005)
Cao, B., Zhao, J., Lv, Z., Liu, X., Yang, S., Kang, X., Kang, K.: Distributed parallel particle swarm optimization for multi-objective and many-objective large-scale optimization. IEEE Access 5, 8214–8221 (2017)
Chen, X., Du, W., Qian, F.: Multi-objective differential evolution with ranking-based mutation operator and its application in chemical process optimization. Chemom. Intell. Lab. Syst. 136, 85–96 (2014)
Cheng, R., Jin, Y., Olhofer, M., Sendhoff, B.: Test problems for large-scale multiobjective and many-objective optimization. IEEE Trans. Cybern. 47(12), 4108–4121 (2017)
Coello Coello, C.A.: Treating constraints as objectives for single-objective evolutionary optimization. Eng. Optim. 32(3), 275–308 (2000)
Coello Coello, C.A.: A short tutorial on evolutionary multiobjective optimization. In: Zitzler, E., Deb, K., Thiele, L., Coello, C.A.C., Corne, D. (eds.) First International Conference on Evolutionary Multi-Criterion Optimization. Lecture Notes in Computer Science No. 1993, pp. 21–40. Springer, Berlin (2001)
Coello Coello, C.A., Christiansen, A.D.: Two new GA-based methods for multiobjective optimization. Civil Eng. Syst. 15(3), 207–243 (1998)
Coello Coello, C.A., Lamont, G.B. (eds.): Applications of Multi-Objective Evolutionary Algorithms. World Scientific, Singapore (2004). ISBN 981-256-106-4
Coello Coello, C.A., Lamont, G.B., Van Veldhuizen, D.A.: Evolutionary Algorithms for Solving Multi-Objective Problems, 2nd edn. Springer, New York (2007). ISBN 978-0-387-33254-3
Cooper, I.M., John, M.P., Lewis, R., Mumford, C.L., Olden, A.: Optimising large scale public transport network design problems using mixed-mode parallel multi-objective evolutionary algorithms. In: 2014 IEEE Congress on Evolutionary Computation (CEC’2014), pp. 2841–2848. IEEE Press, Beijing (2014). ISBN 978-1-4799-1488-3
Corne, D.W., Knowles, J.D., Oates, M.J.: The Pareto envelope-based selection algorithm for multiobjective optimization. In: Schoenauer, M., Deb, K., Rudolph, G., Yao, X., Lutton, E., Merelo, J.J., Schwefel, H.P. (eds.) Proceedings of the Parallel Problem Solving from Nature VI Conference. Springer. Lecture Notes in Computer Science No. 1917, pp. 839–848, Paris (2000)
Corne, D.W., Jerram, N.R., Knowles, J.D., Oates, M.J.: PESA-II: region-based selection in evolutionary multiobjective optimization. In: Spector, L., Goodman, E.D., Wu, A., Langdon, W., Voigt, H.M., Gen, M. Sen, S., Dorigo, M., Pezeshk, S., Garzon, M.H., Burke, E. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference (GECCO’2001), pp. 283–290. Morgan Kaufmann Publishers, San Francisco (2001)
Dai, L., Zhang, P., Wang, Y., Jiang, D., Dai, H., Mao, J., Wang, M.: Multi-objective optimization of cascade reservoirs using NSGA-II: a case study of the three Gorges-Gezhouba Cascade reservoirs in the Middle Yangtze River, China. Hum. Ecol. Risk Assess. 23(4), 814–835 (2017)
Das, D., Patvardhan, C.: New multi-objective stochastic search technique for economic load dispatch. IEEE Proc. Gener. Transm. Distrib. 145(6), 747–752 (1998)
Das, I., Dennis, J.: A closer look at drawbacks of minimizing weighted sums of objectives for Pareto set generation in multicriteria optimization problems. Struct. Optim. 14(1), 63–69 (1997)
Deb, K.: Solving goal programming problems using multi-objective genetic algorithms. In: 1999 Congress on Evolutionary Computation, pp. 77–84. IEEE Service Center, Washington (1999)
Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints. IEEE Trans. Evol. Comput. 18(4), 577–601 (2014)
Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In: Schoenauer, M., Deb, K., Rudolph, G., Yao, X., Lutton, E., Merelo, J.J., Schwefel, H.P. (eds.) Proceedings of the Parallel Problem Solving from Nature VI Conference. Springer. Lecture Notes in Computer Science No. 1917, pp. 849–858, Paris (2000)
Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A Fast and Elitist Multiobjective Genetic Algorithm: NSGA–II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)
Dos Santos, B.C., Neri Nobre, C., Zárate, L.E.: Multi-objective genetic algorithm for feature selection in a protein function prediction context. In: 2018 IEEE Congress on Evolutionary Computation (CEC’2018), pp. 2267–2274. IEEE Press, Rio de Janeiro (2018). ISBN: 978-1-5090-6017-7
Eklund, N.H.W.: Multiobjective visible spectrum optimization: a genetic algorithm approach. Ph.D. thesis, Rensselaer Polytechnic Institute, Troy, New York (2002)
Emmerich, M., Beume, N., Naujoks, B.: An EMO algorithm using the hypervolume measure as selection criterion. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) Evolutionary Multi-Criterion Optimization. Third International Conference, EMO 2005. Springer. Lecture Notes in Computer Science, vol. 3410, pp. 62–76. Guanajuato, México (2005)
Falcón-Cardona, J.G., Coello Coello, C.A.: A multi-objective evolutionary hyper-heuristic based on multiple indicator-based density estimators. In: 2018 Genetic and Evolutionary Computation Conference (GECCO’2018), pp. 633–640. ACM Press, Kyoto (2018). ISBN: 978-1-4503-5618-3
Fan, Q., Wang, W., Yan, X.: Multi-objective differential evolution with performance-metric-based self-adaptive mutation operator for chemical and qbiochemical dynamic optimization problems. Appl. Soft Comput. 59, 33–44 (2017)
Fang, Y., Liu, Q., Li, M., Laili, Y., Duc Truong, P.: Evolutionary many-objective optimization for mixed-model disassembly line balancing with multi-robotic workstations. Eur. J. Oper. Res. 276(1), 160–174 (2019)
Fleischer, M.: The measure of Pareto optima. Applications to multi-objective metaheuristics. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) Evolutionary Multi-Criterion Optimization. Second International Conference, EMO 2003. Lecture Notes in Computer Science, vol. 2632, pp. 519–533. Springer, Faro (2003)
Fogel, L.J.: Artificial Intelligence through Simulated Evolution. John Wiley, New York (1966)
Fogel, L.J.: Artificial Intelligence Through Simulated Evolution. Forty Years of Evolutionary Programming. Wiley, New York (1999)
Fonseca, C.M., Fleming, P.J.: Genetic algorithms for multiobjective optimization: formulation, discussion and generalization. In: Forrest, S. (ed.) Proceedings of the Fifth International Conference on Genetic Algorithms, pp. 416–423. University of Illinois at Urbana-Champaign, Morgan Kauffman Publishers, San Mateo, California (1993)
Fourman, M.P.: Compaction of symbolic layout using genetic algorithms. In: Genetic Algorithms and their Applications: Proceedings of the First International Conference on Genetic Algorithms, pp. 141–153. Lawrence Erlbaum (1985)
Gacôgne, L.: Research of Pareto Set by Genetic Algorithm, Application to Multicriteria Optimization of Fuzzy Controller. In: Fifth European Congress on Intelligent Techniques and Soft Computing EUFIT’97, pp. 837–845. Aachen (1997)
Gagin, A., Allen, A.J., Levin, I.: Combined fitting of small- and wide-angle X-ray total scattering data from nanoparticles: benefits and issues. J. Appl. Crystallogr. 47, 619–629 (2014)
Garza Fabre, M., Toscano Pulido, G., Coello Coello, C.A.: Ranking methods for many-objective problems. In: Aguirre, A.H., Borja, R.M., García, C.A.R. (eds.) MICAI 2009: Advances in Artificial Intelligence. 8th Mexican International Conference on Artificial Intelligence, pp. 633–645. Springer. Lecture Notes in Artificial Intelligence, vol. 5845. Guanajuato, México (2009)
Goh, C.K., Tan, K.C.: A competitive-cooperative coevolutionary paradigm for dynamic multiobjective optimization. IEEE Trans. Evol. Comput. 13(1), 103–127 (2009)
Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Publishing Company, Reading (1989)
Goldberg, D.E., Richardson, J.: Genetic algorithms with sharing for multimodal function optimization. In: Genetic Algorithms and their Applications: Proceedings of the Second International Conference on Genetic Algorithms, pp. 41–49. Lawrence Erlbaum, Massachusetts (1987). ISBN 0-8058-0158-8
Golshan, A., Ghodsiyeh, D., Izman, S.: Multi-objective optimization of wire electrical discharge machining process using evolutionary computation method: effect of cutting variation. Proc. Inst. Mech. Eng. B J. Eng. Manuf. 229(1), 75–85 (2015)
Guerreiro, A.P., Fonseca, C.M.: Computing and Updating Hypervolume Contributions in up to Four Dimensions. IEEE Trans. Evol. Comput. 22(3), 449–463 (2018)
Hadka, D., Reed, P.: Borg: an auto-adaptive many-objective evolutionary computing framework. Evol. Comput. 21(2), 231–259 (2013)
Hajela, P., Lin, C.Y.: Genetic search strategies in multicriterion optimal design. Struct. Optim. 4, 99–107 (1992)
Harel, M., Matalon-Eisenstadt, E., Moshaiov, A.: Solving multi-objective games using a-priori auxiliary criteria. In: 2017 IEEE Congress on Evolutionary Computation (CEC’2017), pp. 1428–1435. IEEE Press, San Sebastián (2017). ISBN 978-1-5090-4601-0
Hemmat Esfe, M., Razi, P., Hajmohammad, M.H., Rostamian, S.H., Sarsam, W.S., Arani, A.A.A., Dahari, M.: Optimization, modeling and accurate prediction of thermal conductivity and dynamic viscosity of stabilized ethylene glycol and water mixture Al2O3 nanofluids by NSGA-II using ANN. Int. Commun. Heat Mass Transf. 82, 154–160 (2017)
Hernández Gómez, R., Coello Coello, C.A.: Improved metaheuristic based on the r2 indicator for many-objective optimization. In: 2015 Genetic and Evolutionary Computation Conference (GECCO 2015), pp. 679–686. ACM Press, Madrid (2015). ISBN 978-1-4503-3472-3
Hernández Gómez, R., Coello Coello, C.A.: A hyper-heuristic of scalarizing functions. In: 2017 Genetic and Evolutionary Computation Conference (GECCO’2017), pp. 577–584. ACM Press, Berlin (2017). ISBN 978-1-4503-4920-8
Hernández Gómez, R., Coello Coello, C.A., Alba Torres, E.: A multi-objective evolutionary algorithm based on parallel coordinates. In: 2016 Genetic and Evolutionary Computation Conference (GECCO’2016), pp. 565–572. ACM Press, Denver (2016). ISBN 978-1-4503-4206-3
Ho-Huu, V., Hartjes, S., Visser, H.G., Curran, R.: An improved MOEA/D algorithm for bi-objective optimization problems with complex Pareto fronts and its application to structural optimization. Expert Syst. Appl. 92, 430–446 (2018)
Holland, J.H.: Outline for a logical theory of adaptive systems. J. Assoc. Comput. Mach. 9, 297–314 (1962)
Horn, J., Nafpliotis, N., Goldberg, D.E.: A Niched Pareto genetic algorithm for multiobjective optimization. In: Proceedings of the First IEEE Conference on Evolutionary Computation, IEEE World Congress on Computational Intelligence, vol. 1, pp. 82–87. IEEE Service Center, Piscataway (1994)
Hu, H., Xu, L., Goodman, E.D., Zeng, S.: NSGA-II-based nonlinear PID controller tuning of greenhouse climate for reducing costs and improving performances. Neural Comput. Appl. 24(3–4), 927–936 (2014)
Huang, B., Buckley, B., Kechadi, T.M.: Multi-objective feature selection by using NSGA-II for customer churn prediction in telecommunications. Expert Syst. Appl. 37(5), 3638–3646 (2010)
Hutter, F., Hoos, H.H., Leyton-Brown, K., Stützle, T.: ParamILS: an automatic algorithm configuration framework. J. Artif. Intell. Res. 36, 267–306 (2009)
Igel, C., Hansen, N., Roth, S.: Covariance matrix adaptation for multi-objective optimization. Evol. Comput. 15(1), 1–28 (2007)
Ikeya, K., Shimoda, M., Shi, J.X.: Multi-objective free-form optimization for shape and thickness of shell structures with composite materials. Compos. Struct. 135, 262–275 (2016)
Ishibuchi, H., Akedo, N., Nojima, Y.: Behavior of multiobjective evolutionary algorithms on many-objective knapsack problems. IEEE Trans. Evol. Comput. 19(2), 264–283 (2015)
Ishibuchi, H., Masuda, H., Tanigaki, Y., Nojima, Y.: Modified distance calculation in generational distance and inverted generational distance. In: Gaspar-Cunha, A., Antunes, C.H., Coello Coello, C. (eds.) Eighth International Conference on Evolutionary Multi-Criterion Optimization, EMO 2015. Lecture Notes in Computer Science, vol. 9019, pp. 110–125. Springer Guimarães (2015)
Ishibuchi, H., Murata, T.: Multi-objective genetic local search algorithm. In: Fukuda, T., Furuhashi, T. (eds.) Proceedings of the 1996 International Conference on Evolutionary Computation, pp. 119–124. IEEE, Nagoya (1996)
Ishibuchi, H., Setoguchi, Y., Masuda, H., Nojima, Y.: Performance of decomposition-based many-objective algorithms strongly depends on Pareto front shapes. IEEE Trans. Evol. Comput. 21(2), 169–190 (2017)
Jaszkiewicz, A.: Improved quick hypervolume algorithm. Comput. Oper. Res. 90, 72–83 (2018)
Jiang, M., Huang, Z., Jiang, G., Shi, M., Zeng, X.: Motion generation of multi-legged robot in complex terrains by using estimation of distribution algorithm. In: 2017 IEEE Symposium Series on Computational Intelligence (SSCI’2017), pp. 111–116. IEEE Press, Honolulu (2017). ISBN: 978-1-5386-2727-3
Jin, Y., Okabe, T., Sendhoff, B.: Dynamic weighted aggregation for evolutionary multi-objective optimization: why does it work and how? In: Spector, L., Goodman, E.D., Wu, A., Langdon, W., Voigt, H.M., Gen, M., Sen, S., Dorigo, M., Pezeshk, S., Garzon, M.H., Burke, E. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference (GECCO’2001), pp. 1042–1049. Morgan Kaufmann Publishers, San Francisco (2001)
Karakostas, S.M.: Land-use planning via enhanced multi-objective evolutionary algorithms: optimizing the land value of major greenfield initiatives. J. Land Use Sci. 11(5), 595–617 (2016)
Karakostas, S.M.: Bridging the gap between multi-objective optimization and spatial planning: a new post-processing methodology capturing the optimum allocation of land uses against established transportation infrastructure. Trans. Plan. Technol. 40(3), 305–326 (2017)
Kim, N., Bhalerao, I., Han, D., Yang, C., Lee, H.: Improving surface roughness of additively manufactured parts using a photopolymerization model and multi-objective particle swarm optimization. Appl. Sci. Basel 9(1), 151 (2019). Article Number:151
Knowles, J., Corne, D.: Properties of an adaptive archiving algorithm for storing nondominated vectors. IEEE Trans. Evol. Comput. 7(2), 100–116 (2003)
Knowles, J.D.: Local-Search and Hybrid Evolutionary Algorithms for Pareto Optimization. Ph.D. thesis, The University of Reading, Department of Computer Science, Reading, UK (2002)
Knowles, J.D., Corne, D.W.: Approximating the nondominated front using the Pareto archived evolution strategy. Evol. Comput. 8(2), 149–172 (2000)
Kuhn, H.W.: The Hungarian method for the assignment problem. Naval Res. Logist. Q. 2(1–2), 83–97 (1955). https://doi.org/10.1002/nav.3800020109
Kuhn, H.W., Tucker, A.W.: Nonlinear programming. In: Neyman, J. (ed.) Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, pp. 481–492. University of California Press, Berkeley (1951)
Kukkonen, S., Deb, K.: Improved pruning of non-dominated solutions based on crowding distance for bi-objective optimization problems. In: 2006 IEEE Congress on Evolutionary Computation (CEC’2006), pp. 1164–1171. IEEE, Vancouver (2006)
Lacour, R., Klamroth, K., Fonseca, C.M.: A box decomposition algorithm to compute the hypervolume indicator. Comput. Oper. Res. 79, 347–360 (2017)
Lepš, M.: Single and multi-objective optimization in civil engineering. In: Annicchiarico, W., Périaux, J., Cerrolaza, M., Winter, G. (eds.) Evolutionary Algorithms and Intelligent Tools in Engineering Optimization, pp. 322–342. WIT Press, CIMNE Barcelona, Southampton, Boston (2005). ISBN 1-84564-038-1
Li, F., Cheng, R., Liu, J., Jin, Y.: A two-stage r2 indicator based evolutionary algorithm for many-objective optimization. Appl. Soft Comput. 67, 245–260 (2018)
Li, H., Deb, K.: Challenges for evolutionary multiobjective optimization algorithms in solving variable-length problems. In: 2017 IEEE Congress on Evolutionary Computation (CEC’2017), pp. 2217–2224. IEEE Press, San Sebastián (2017). ISBN 978-1-5090-4601-0
Li, Z., Zheng, L.: Integrated design of active suspension parameters for solving negative vibration effects of switched reluctance-in-wheel motor electrical vehicles based on multi-objective particle swarm optimization. J. Vibr. Control 25(3), 639–654 (2019)
Lopez-Herrejon, R.E., Ferrer, J., Chicano, F., Egyed, A., Alba, E.: Comparative analysis of classical multi-objective evolutionary algorithms and seeding strategies for pairwise testing of software product lines. In: 2014 IEEE Congress on Evolutionary Computation (CEC’2014), pp. 387–396. IEEE Press, Beijing (2014). ISBN 978-1-4799-1488-3
Lotfan, S., Ghiasi, R.A., Fallah, M., Sadeghi, M.H.: ANN-based modeling and reducing dual-fuel engine’s challenging emissions by multi-objective evolutionary algorithm NSGA-II. Appl. Energy 175, 91–99 (2016)
Ma, X., Liu, F., Qi, Y., Wang, X., Li, L., Jiao, L., Yin, M., Gong, M.: A multiobjective evolutionary algorithm based on decision variable analyses for multiobjective optimization problems with large-scale variables. IEEE Trans. Evol. Comput. 20(2), 275–298 (2016)
Ma, Y., Zuo, X., Huang, X., Gu, F., Wang, C., Zhao, X.: A MOEA/D based approach for hospital department layout design. In: 2016 IEEE Congress on Evolutionary Computation (CEC’2016), pp. 793–798. IEEE Press, Vancouver (2016). ISBN 978-1-5090-0623-9
Makaremi, Y., Haghighi, A., Ghafouri, H.R.: Optimization of pump scheduling program in water supply systems using a self-adaptive NSGA-II; a review of theory to real application. Water Resour. Manag. 31(4), 1283–1304 (2017)
Manoatl Lopez, E., Coello Coello, C.A.: IGD+-EMOA: a multi-objective evolutionary algorithm based on IGD+. In: 2016 IEEE Congress on Evolutionary Computation (CEC’2016), pp. 999–1006. IEEE Press, Vancouver (2016). ISBN 978-1-5090-0623-9
Manoatl Lopez, E., Coello Coello, C.A.: An improved version of a reference-based multi-objective evolutionary algorithm based on IGD+ . In: 2018 Genetic and Evolutionary Computation Conference (GECCO’2018), pp. 713–720. ACM Press, Kyoto (2018). ISBN: 978-1-4503-5618-3
Marco, N., Lanteri, S., Desideri, J.A., Périaux, J.: A Parallel genetic algorithm for multi-objective optimization in computational fluid dynamics. In: Miettinen, K., Mäkelä, M.M., Neittaanmäki, P., Périaux, J. (eds.) Evolutionary Algorithms in Engineering and Computer Science, chap. 22, pp. 445–456. Wiley, Chichester (1999)
Marcu, T., Ferariu, L., Frank, P.M.: Genetic evolving of dynamic neural networks with application to process fault diagnosis. In: Procedings of the EUCA/IFAC/IEEE European Control Conference ECC’99. CD-ROM, F-1046,1, Karlsruhe (1999)
Mariani, T., Guizzo, G., Vergilio, S.R., Pozo, A.T.: Grammatical evolution for the multi-objective integration and test order problem. In: 2016 Genetic and Evolutionary Computation Conference (GECCO’2016), pp. 1069–1076. ACM Press, Denver (2016). ISBN 978-1-4503-4206-3
Martí, L., García, J., Berlanga, A., Molina, J.M.: Introducing MONEDA: scalable multiobjective optimization with a neural estimation of distribution algorithm. In: 2008 Genetic and Evolutionary Computation Conference (GECCO’2008), pp. 689–696. ACM Press, Atlanta (2008). ISBN 978-1-60558-131-6
Mazumdar, A., Chugh, T., Miettinen, K., nez, M.L.I.: On dealing with uncertainties from kriging models in offline data-driven evolutionary multiobjective optimization. In: Evolutionary Multi-Criterion Optimization, Tenth International Conference, EMO 2019, pp. 463–474. Springer. Lecture Notes in Computer Science, vol. 11411, East Lansing (2019). ISBN: 978-3-030-12597-4
Menchaca-Mendez, A., Coello Coello, C.A.: An alternative hypervolume-based selection mechanism for multi-objective evolutionary algorithms. Soft Comput. 21(4), 861–884 (2017)
Mendes Guimarães, M., Cruzeiro Martins, F.V.: A multiobjective approach applying in a Brazilian emergency medical service. In: 2018 IEEE Congress on Evolutionary Computation (CEC’2018), pp. 1605–1612. IEEE Press, Rio de Janeiro (2018). ISBN: 978-1-5090-6017-7
Mendoza, F., Bernal-Agustin, J.L., Navarro, J.A.D.: NSGA and SPEA applied to multiobjective design of power distribution systems. IEEE Trans. Power Syst. 21(4), 1938–1945 (2006)
Miettinen, K.M.: Nonlinear Multiobjective Optimization. Kluwer Academic Publishers, Boston (1999)
Miguel Antonio, L., Coello Coello, C.A.: Decomposition-based approach for solving large scale multi-objective problems. In: Handl, J., Hart, E., Lewis, P.R., López-Ibáñez, M., Ochoa, G., Paechter, B. (eds.) 14th International Conference on Parallel Problem Solving from Nature—PPSN XIV, pp. 525–534. Springer. Lecture Notes in Computer Science, vol. 9921, Edinburgh (2016). ISBN 978-3-319-45822-9
Miguel Antonio, L., Coello Coello, C.A.: Coevolutionary multiobjective evolutionary algorithms: survey of the state-of-the-art. IEEE Trans. Evol. Comput. 22(6), 851–865 (2018)
Miguel Antonio, L., Molinet Berenguer, J.A., Coello Coello, C.A.: Evolutionary many-objective optimization based on linear assignment problem transformations. Soft Comput. 22(16), 5491–5512 (2018)
Mishra, S., Coello Coello, C.A.: Parallelism in divide-and-conquer non-dominated sorting: a theoretical study considering the PRAM-CREW model. J. Heuristics 25(3), 455–483 (2019)
Moghadasi, A.H., Heydari, H., Farhadi, M.: Pareto Optimality for the Design of SMES Solenoid Coils Verified by Magnetic Field Analysis. IEEE Trans. Appl. Supercond. 21(1), 13–20 (2011)
Morse, J.: Reducing the size of the nondominated set: pruning by clustering. Comput. Oper. Res. 7(1–2), 55–66 (1980)
Moudani, W.E., Cosenza, C.A.N., de Coligny, M., Mora-Camino, F.: A bi-criterion approach for the airlines crew rostering problem. In: Zitzler, E., Deb, K., Thiele, L., Coello Coello, C.A., Corne, D. (eds.) First International Conference on Evolutionary Multi-Criterion Optimization. Lecture Notes in Computer Science, vol. 1993, pp. 486–500. Springer, Berlin (2001)
Muller, J.: SOCEMO: surrogate optimization of computationally expensive multiobjective problems. Informs J. Comput. 29(4), 581–596 (2017)
Narayanan, S., Azarm, S.: On improving multiobjective genetic algorithms for design optimization. Struct. Optim. 18, 146–155 (1999)
Lopez-Ibanez, M.L.I., Prasad, T.D., Paechter, B.: Multi-objective optimisation of the pump scheduling problem using SPEA2. In: 2005 IEEE Congress on Evolutionary Computation (CEC’2005), vol. 1, pp. 435–442. IEEE Service Center, Edinburgh (2005)
Arias-Montano, A.A.M., Coello Coello, C.A., Mezura-Montes, E.: Multi-objective evolutionary algorithms in aeronautical and aerospace engineering. IEEE Trans. Evol. Comput. 16(5), 662–694 (2012)
Ortega, G., Filatovas, E., Garzon, E.M., Casado, L.G.: Non-dominated sorting procedure for pareto dominance ranking on multicore CPU and/or GPU. J. Global Optim. 69(3), 607–627 (2017)
Palar, P.S., Shimoyama, K.: Multiple metamodels for robustness estimation in multi-objective robust optimization. In: Evolutionary Multi-Criterion Optimization, Ninth International Conference, EMO 2017, pp. 469–483. Springer. Lecture Notes in Computer Science, vol. 10173, Münster (2017). ISBN 978-3-319-54156-3
Peng, Y., Xue, S., Li, M.: An improved multi-objective optimization algorithm based on NPGA for cloud task scheduling. Int. J. Grid Distrib. Comput. 9(4), 161–176 (2016)
Pescador-Rojas, M., Hernández Gómez, R., Montero, E., Rojas-Morales, N., Riff, M.C., Coello Coello, C.A.: An overview of weighted and unconstrained scalarizing functions. In: Trautmann, H., Rudolph, G., Klamroth, K., Schütze, O., Wiecek, M. Jin, Y., Grimme, C. (eds.) Ninth International Conference on Evolutionary Multi-Criterion Optimization, EMO 2017, pp. 499–513. Springer. Lecture Notes in Computer Science, vol. 10173, Münster (2017). ISBN 978-3-319-54156-3
Praditwong, K., Yao, X.: How well do multi-objective evolutionary algorithms scale to large problems. In: 2007 IEEE Congress on Evolutionary Computation (CEC’2007), pp. 3959–3966. IEEE Press, Singapore (2007)
Quintana, D., Denysiuk, R., Garcia-Rodriguez, S., Gaspar-Cunha, A.: Portfolio implementation risk management using evolutionary multiobjective optimization. Appl. Sci. Basel 7(10), 1079 (2017). Article Number: 1079
Rabiee, M., Zandieh, M., Ramezani, P.: Bi-objective partial flexible job shop scheduling problem: NSGA-II, NRGA, MOGA and PAES approaches. Int. J. Prod. Res. 50(24), 7327–7342 (2012)
Roberge, V., Tarbouchi, M., Labonte, G.: Comparison of parallel genetic algorithm and particle swarm optimization for real-time UAV path planning. IEEE Trans. Ind. Inform. 9(1), 132–141 (2013)
Rocha, G.K., dos Santos, K.B., Angelo, J.S., Custódio, F.L., Barbosa, H.J.C., Dardenne, L.E.: Inserting co-evolution information from contact maps into a multiobjective genetic algorithm for protein structure prediction. In: 2018 IEEE Congress on Evolutionary Computation (CEC’2018), pp. 957–964. IEEE Press, Rio de Janeiro (2018). ISBN: 978-1-5090-6017-7
Rosenberg, R.S.: Simulation of genetic populations with biochemical properties. Ph.D. thesis, University of Michigan, Ann Arbor, Michigan (1967)
Rubaiee, S., Yildirim, M.B.: An energy-aware multiobjective ant colony algorithm to minimize total completion time and energy cost on a single-machine preemptive scheduling. Comput. Ind. Eng. 127, 240–252 (2019)
Rudolph, G., Agapie, A.: Convergence properties of some multi-objective evolutionary algorithms. In: Proceedings of the 2000 Conference on Evolutionary Computation, vol. 2, pp. 1010–1016. IEEE Press, Piscataway (2000)
Sadowski, K.L., van der Meer, M.C., Hoang Luong, N., Alderliesten, T., Thierens, D., van der Laarse, R., Niatsetski, Y., Bel, A., Bosman, P.A.N.: Exploring trade-offs between target coverage, healthy tissue sparing, and the placement of catheters in HDR brachytherapy for prostate cancer using a novel multi-objective model-based mixed-integer evolutionary algorithm. In: 2017 Genetic and Evolutionary Computation Conference (GECCO’2017), pp. 1224–1231. ACM Press, Berlin (2017). ISBN 978-1-4503-4920-8
Sandgren, E.: Multicriteria design optimization by goal programming. In: Adeli, H. (ed.) Advances in Design Optimization, chap. 23, pp. 225–265. Chapman & Hall, London (1994)
Sanhueza, C., Jiménez, F., Berretta, R., Moscato, P.: PasMoQAP: a parallel asynchronous memetic algorithm for solving the multi-objective quadratic assignment problem. In: 2017 IEEE Congress on Evolutionary Computation (CEC’2017), pp. 1103–1110. IEEE Press, San Sebastián (2017). ISBN 978-1-5090-4601-0
Santiago, A., Huacuja, H.J.F., Dorronsoro, B., Pecero, J.E., Santillan, C.G., Barbosa, J.J.G., Monterrubio, J.C.S.: A survey of decomposition methods for multi-objective optimization. In: Castillo, O., Melin, P., Pedrycz, W., Kacprzyk, J. (eds.) Recent Advances on Hybrid Approaches for Designing Intelligent Systems, pp. 453–465. Springer, Berlin (2014). ISBN 978-3-319-05170-3
Saxena, D.K., ao A. Duro, J., Tiwari, A., Deb, K., Zhang, Q.: Objective reduction in many-objective optimization: linear and nonlinear algorithms. IEEE Trans. Evol. Comput. 17(1), 77–99 (2013)
Schaffer, J.D.: Multiple Objective Optimization with Vector Evaluated Genetic Algorithms. Ph.D. thesis, Vanderbilt University, Nashville, Tennessee, USA (1984)
Schaffer, J.D.: Multiple objective optimization with vector evaluated genetic algorithms. In: Genetic Algorithms and their Applications: Proceedings of the First International Conference on Genetic Algorithms, pp. 93–100. Lawrence Erlbaum, London (1985)
Schütze, O., Lara, A., Coello Coello, C.A.: On the influence of the number of objectives on the hardness of a multiobjective optimization problem. IEEE Trans. Evol. Comput. 15(4), 444–455 (2011)
Schwefel, H.P.: Kybernetische evolution als strategie der experimentellen forschung inder strömungstechnik. Dipl.-Ing. thesis (1965) (in German)
Schwefel, H.P.: Numerical Optimization of Computer Models. Wiley, Chichester (1981)
Song, J., Yang, Y., Wu, J., Wu, J., Sun, X., Lin, J.: Adaptive surrogate model based multiobjective optimization for coastal aquifer management. J. Hydrol. 561, 98–111 (2018)
Srinivas, N., Deb, K.: Multiobjective optimization using nondominated sorting in genetic algorithms. Evol. Comput. 2(3), 221–248 (1994)
Toscano Pulido, G., Coello Coello, C.A.: The micro genetic algorithm 2: towards online adaptation in evolutionary multiobjective optimization. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) Second International Conference on Evolutionary Multi-Criterion Optimization, EMO 2003, pp. 252–266. Springer. Lecture Notes in Computer Science, vol. 2632, Faro (2003)
Tušar, T., Filipič, B.: Visualization of Pareto front approximations in evolutionary multiobjective optimization: a critical review and the prosection method. IEEE Trans. Evol. Comput. 19(2), 225–245 (2015)
Vazquez-Rodriguez, J.A., Petrovic, S.: A new dispatching rule based genetic algorithm for the multi-objective job shop problem. J. Heuristics 16(6), 771–793 (2010)
Vrugt, J.A., Robinson, B.A.: Improved evolutionary optimization from genetically adaptive multimethod search. Proc. Nat. Acad. Sci. U.S.A. 104(3), 708–711 (2007)
Walker, D.J., Keedwell, E.: Multi-objective optimisation with a sequence-based selection hyper-heuristic. In: Proceedings of the 2016 on Genetic and Evolutionary Computation Conference Companion, pp. 81–82. ACM Press, New York (2016)
Wang, L., Li, L.P.: Fixed-structure h-infinity controller synthesis based on differential evolution with level comparison. IEEE Trans. Evol. Comput. 15(1), 120–129 (2011)
Wang, Q., Guidolin, M., Savic, D., Kapelan, Z.: Two-objective design of benchmark problems of a water distribution system via MOEAs: towards the best-known approximation of the true Pareto front. J. Water Resour. Plan. Manag. 141(3), 04014060 (2015)
Wang, S., Hua, D., Zhang, Z., Li, M., Yao, K., Wen, Z.: Robust controller design for main steam pressure based on SPEA2. In: Huang, D.S., Gan, Y., Premaratne, P., Han, K. (eds.) Bio-Inspired Computing and Applications, Seventh International Conference on Intelligent Computing, ICIC 2011, pp. 176–182. Springer. Lecture Notes in Computer Science, vol. 6840, Zhengzhou (2012)
Weile, D.S., Michielssen, E.: Integer coded Pareto genetic algorithm design of constrained antenna arrays. Electron. Lett. 32(19), 1744–1745 (1996)
Wienke, P.B., Lucasius, C., Kateman, G.: Multicriteria target optimization of analytical procedures using a genetic algorithm. Anal. Chim. Acta 265(2), 211–225 (1992)
Wilson, P.B., Macleod, M.D.: Low implementation cost IIR digital filter design using genetic algorithms. In: IEE/IEEE Workshop on Natural Algorithms in Signal Processing, pp. 4/1–4/8. Chelmsford (1993)
Yang, D., Sun, Y., di Stefano, D., Turrin, M., Sariyildiz, S.: Impacts of problem scale and sampling strategy on surrogate model accuracy. An application of surrogate-based optimization in building design. In: 2016 IEEE Congress on Evolutionary Computation (CEC’2016), pp. 4199–4207. IEEE Press, Vancouver (2016). ISBN 978-1-5090-0623-6
Yang, W., Chen, Y., He, R., Chang, Z., Chen, Y.: The bi-objective active-scan agile earth observation satellite scheduling problem: modeling and solution approach. In: 2018 IEEE Congress on Evolutionary Computation (CEC’2018), pp. 1083–1090. IEEE Press, Rio de Janeiro (2018). ISBN: 978-1-5090-6017-7
Ye, C.J., Huang, M.X.: Multi-objective optimal power flow considering transient stability based on parallel NSGA-II. IEEE Trans. Power Syst. 30(2), 857–866 (2015)
Ye, X., Liu, S., Yin, Y., Jin, Y.: User-oriented many-objective cloud workflow scheduling based on an improved knee point driven evolutionary algorithm. Knowl. Based Syst. 135, 113–124 (2017)
Zebulum, R.S., Pacheco, M.A., Vellasco, M.: A multi-objective optimisation methodology applied to the synthesis of low-power operational amplifiers. In: Cheuri, I.J., dos Reis Filho, C.A. (eds.) Proceedings of the XIII International Conference in Microelectronics and Packaging, vol. 1, pp. 264–271. Curitiba (1998)
Zhang, C., Chen, Y., Shi, M., Peterson, G.: Optimization of heat pipe with axial “Omega”-shaped micro grooves based on a niched Pareto genetic algorithm (NPGA). Appl. Thermal Eng. 29(16), 3340–3345 (2009)
Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)
Zhang, X., Tian, Y., Cheng, R., Jin, Y.: A decision variable clustering-based evolutionary algorithm for large-scale many-objective optimization. IEEE Trans. Evol. Comput. 22(1), 97–112 (2018)
Zille, H., Ishibuchi, H., Mostaghim, S., Nojima, Y.: A framework for large-scale multiobjective optimization based on problem transformation. IEEE Trans. Evol. Comput. 22(2), 260–275 (2018)
Zitzler, E.: Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications. Ph.D. thesis, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland (1999)
Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms on test functions of different difficulty. In: Wu, A.S. (ed.) Proceedings of the 1999 Genetic and Evolutionary Computation Conference. Workshop Program, pp. 121–122. Orlando, Florida (1999)
Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In: X.Y. et al. (ed.) Parallel Problem Solving from Nature—PPSN VIII, pp. 832–842. Springer. Lecture Notes in Computer Science, vol. 3242, Birmingham, UK (2004)
Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: improving the strength pareto evolutionary algorithm. In: Giannakoglou, K., Tsahalis, D., Periaux, J., Papailou, P., Fogarty, T. (eds.) EUROGEN 2001. Evolutionary Methods for Design, Optimization and Control with Applications to Industrial Problems, pp. 95–100. Athens, Greece (2001)
Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., da Fonseca, V.G.: Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans. Evol. Comput. 7(2), 117–132 (2003)
Acknowledgements
The first author acknowledges support from CONACyT project no. 2016-01-1920 (Investigación en Fronteras de la Ciencia 2016) and from a project from the 2018 SEP-Cinvestav Fund (application no. 4).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Coello, C.A.C., Brambila, S.G., Gamboa, J.F., Tapia, M.G.C. (2021). Multi-Objective Evolutionary Algorithms: Past, Present, and Future. In: Pardalos, P.M., Rasskazova, V., Vrahatis, M.N. (eds) Black Box Optimization, Machine Learning, and No-Free Lunch Theorems. Springer Optimization and Its Applications, vol 170. Springer, Cham. https://doi.org/10.1007/978-3-030-66515-9_5
Download citation
DOI: https://doi.org/10.1007/978-3-030-66515-9_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-66514-2
Online ISBN: 978-3-030-66515-9
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)