[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Constraint Relaxation Techniques to Aid the Reuse of Knowledge Bases and Problem Solvers

  • Conference paper
Research and Development in Intelligent Systems XX (SGAI 2003)

Abstract

Effective re-use of knowledge bases requires the identification of plausible combinations of both problem solvers and knowledge bases, which can be an expensive task. Can we identify impossible combinations quickly? The capabilities of combinations can be represented using constraints, and we propose using constraint relaxation to help eliminate impossible combinations. If a relaxed constraint representation of a combination is inconsistentthen we know that the original combination is inconsistent as well. We examine different relaxation strategies based on constraint graph properties, and we show that removing constraintsof low tightness is an efficientstrategywhich is also simple to implement

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 103.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. White, S. & Sleeman, D., A Constraint-Based Approach to the Description & Detection of Fitness-for-Purpose, ETAI, vol. 4, pp. 155–183,2000.

    MathSciNet  Google Scholar 

  2. White, S. & Sleeman, D., Providing Advice on the Acquisition and Reuse of Knowledge Bases in Problem Solving, 11th Banff Knowledge Acquisition Workshop. SRDG Publications, Calgary Canada, 1998, pp. 21.

    Google Scholar 

  3. AKT, Reuse Knowledge, [WWW],Available from: http://www.aktors.org/publications/reuse/, [Accessed 1 June 2003].

  4. Kolodner, J., Case-BasedReasoning. San Mateo, CA: Morgan Kaufinann, 1993.

    Book  Google Scholar 

  5. Hayes-Roth, F., Waterman, D. & Lenat, D., Building Expert Systems. London: Addison-Wesley, 1983.

    Google Scholar 

  6. Bennett, J. & Engelmore, R., Experience using EMYCIN. In Rule-Based Expert Systems, in Experience using EMYCIN. In Rule-Based Expert Systems, B. Buchanan and E. Shortliffe, Eds. London: Addison-Wesley, 1983, pp. 314–328.

    Google Scholar 

  7. Gennari J. H., Musen, M. A., Fergerson, R., et al., The Evolution of Protégé: An Environment for Knowledge-Based Systems Development., International Journal ofHuman-Computer Studies, vol. 58, pp. 89–123, 2003.

    Article  Google Scholar 

  8. Bartak, R., Online Guide to Constraint Programming, [WWW], Available from: http://kti.ms.mff.cuni.cz/-bartak/constraintslbinarv.html/-bartak/constraintslbinarv.html, [Accessed March 2003 1998].

  9. Tsang, E., Foundations of Constraint Satisfaction. London & San Diego: Academic Press, 1993.

    Google Scholar 

  10. ILOG Solver, 5.3 ed. Paris: ILOG Inc., http://www.ilog.coml.. 2003

  11. SICStus Prolog, 3.9.1 ed. Kista: Swedish Institute of Computer Science, http://www.sics.se/sicstus/./sicstus/. 2001

  12. Freuder, E., Synthesizing constraint expressions, CACM, 1978, pp. 958–966.

    Google Scholar 

  13. Freuder, E. & Wallace, R., Partial Constraint Satisfaction, Artificial Intelligence, vol. 58, pp. 2170, 1992.

    MathSciNet  Google Scholar 

  14. Bistarelli, S., Montanari, U. & Rossi, F., Constraint Solving over Semirings, IJCAI’95, 1995, pp. 624–630.

    Google Scholar 

  15. Schiex, T., Fargier, H. & Verfaillie, G., Valued Constraint Satisfaction Problems: hard and easy problems, IJCAI’95, 1995, pp. 631–637.

    Google Scholar 

  16. Hooker, J., Logic-based methods for optimization: combining optimization and constraint satisfaction. New York, 2000, pp. 209.

    Google Scholar 

  17. MacIntyre, E., Prosser, P., Smith, B., et al., Random Constraint Satisfaction: Theory meets Practice, CP-98, 1998, pp. 325–339.

    Google Scholar 

  18. Bacchus, F., Chen, X., Beek, P. V., et al., Binary vs. non-binary constraints, Artificial Intelligence, vol. 140, pp. 1–37, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  19. Prosser, P., Binary constraint satisfaction problems: Some are harder than others, Proceedings ECAI-94 (11 th European Conference on Artificial Intelligence), 1994, pp. 95–99.

    Google Scholar 

  20. CSP-Suite, 1.90 ed. Aberdeen: University of Aberdeen, http://www.csd.abdn.ac.uk/-tnordlanIProglog%20programs/-tnordlanIProglog%20programs. 2002

  21. SICStus, Constraint Logic Programming over Finite Domains, in SICStus Prolog User’s Manual, vol. Release 3.9.1, R. 3.9.1, Ed. Kista: Intelligent Systems Laboratory Swedish Institute ofComputer Science, 2002, pp. 345–381.

    Google Scholar 

  22. Nordlander, T., First Year Report, Aberdeen University, 2002.

    Google Scholar 

  23. Walsh, T., Search on high degree graphs, IJCAl-2001, 2001, pp. 266–274.

    Google Scholar 

  24. Rajpathak, D., Motta, E. & Roy, R., The Generic Task Ontology For Scheduling Applications, International Conference on Artificial Intelligence, Las Vegas, 2001.

    Google Scholar 

  25. Smith, S. F. & Becker, M. A., An Ontology for Constructing Scheduling Systems, AAAI Symposium on Ontological Engineering, Mars 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag London

About this paper

Cite this paper

Nordlander, T., Brown, K., Sleeman, D. (2004). Constraint Relaxation Techniques to Aid the Reuse of Knowledge Bases and Problem Solvers. In: Coenen, F., Preece, A., Macintosh, A. (eds) Research and Development in Intelligent Systems XX. SGAI 2003. Springer, London. https://doi.org/10.1007/978-0-85729-412-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-412-8_24

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-780-3

  • Online ISBN: 978-0-85729-412-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics