
Constraint Relaxation Techniques to Aid the
Reuse of Knowledge Bases and Problem Solvers

Tomas Nordlander', Ken Brown", and Derek Sleeman'
IDepartment of Computing Science, University of Aberdeen, Scotland, UK

{tnordlan, sleeman}@csd.abdn.ac.uk
2CorkConstraint Computation Centre, Department ofComputer Science,

University College Cork, Ireland
k.brown@cs.ucc.ie

Abstract: Effective re-use of knowledge bases requires the identification
of plausible combinations of both problem solvers and knowledge bases,
which can be an expensive task. Can we identify impossible combinations
quickly? The capabilities of combinations can be represented using
constraints, and we propose using constraint relaxation to help eliminate
impossible combinations. If a relaxed constraint representation of a
combination is inconsistent then we know that the original combination is
inconsistent as well. We examine different relaxation strategies based on
constraint graph properties, and we show that removing constraintsof low
tightness is an efficientstrategywhich is also simple to implement.

1. Introduction
The MUSKRAT (Multistrategy Knowledge Refinement and Acquisition Toolbox)
framework aims to unify problem solving, knowledge acquisition and knowledge-base
refinement in a single computational framework [1]. Given a set of Knowledge Bases
(KBs) and ProblemSolvers (PSs), the MUSKRAT-Advisor [2] investigates whether the
available KEs will fulfil the requirements of the selected PS for a given problem. The
Advisor informs the user if the available KEs are sufficient. Our research addresses the
problem of checking whether combinations of existing KEs could be reused with the
selectedPS. We proposeto represent the KEs and PSsas Constraint Satisfaction Problems
(CSPs), which can be combined to produce composite CSPs. If a combined CSP is
solvable, then the original combination of KEs with the selected PS couldbe used to solve
the given problem; if the resultant CSP is inconsistent, then the combination cannot be
used. Identifying a suitable combination thus requires examining a series of CSPs, and
rejecting insolvable ones untilwe find onewith a solution. ProvingCSPs insolvable canbe
a lengthyprocess; we would like to finda way to do thisquickly. The methodwe propose
here is to relax a CSP, and if we can prove that the relaxedversion is insolvable then we
know that the original CSP does not have a solution either. However, if the relaxedCSP
has a solution, then the original CSP represents a plausible combination. To test this
proposal, we investigate different relaxation strategies for binary CSPs and test them on
randomlygeneratedproblems. We suggestthat removingconstraints with low tightness is
an effective method for identifying insolvable combinations. Thus this paper reports a
contribution to the challenging problemof Knowledge Reuseas it presentsan aid basedon
Constraint Programming to enablea quickidentification of inconsistent combinations.

323

F. Coenen et al. (eds.), Research and Development in Intelligent Systems XX

© Springer-Verlag London 2004

324

2. Background
This work is supported by the Advanced Knowledge Technologies (AKT)
Interdisciplinary Research Collaboration, which focuses on six challenges to ease
substantial bottlenecks in the engineering and management of knowledge; reuse of
knowledge is one of those challenges [3]. Current work in reuse has resulted in
systems where a number of components have been reused, including ontologies,
problem-solving methods (PSMs), and knowledge bases (KBs) [3]. The use of cases
in Case Based Reasoning is a related activity [4].

2.1 Reusing Knowledge Based Systems
One of the main goals of the Knowledge Based System (KBS) community is to
build new systems out of existing Problem Solvers (say Problem Solving Methods)
and existing Knowledge Bases. At an early stage the Knowledge Engineering sub
area identified a range of Problem Solving Methods, which they argued covered the
whole range of problem solving and included methods for Classification and
Diagnosis through to Planning (so-called synthesis tasks) [5]. An early but powerful
example of reuse of a PSM was the use of the EMYCIN shell with a variety of
domain-specific knowledge bases [6]. More recently, systems like PROTEGE have
provided an option to write KBs in a standardised format like OKBC [7]. This then
takes the goal of building new Knowledge-Based Systems (KBSs) one step further.
A possible approach is to take the required KB and PSM and to produce manually,
initially, a series of mappings, which will make the 2 components "comparable" [7],
and thus to develop a new KBS from pre-existing components.

We have chosen to work with the domain of scheduling, mainly because the
constraint community has been successful in addressing real world problems in this
area. Also, we argue that the nature of scheduling problems are very close to CSPs,
hence it would be relatively easy to transform PSs and KBs in this domain. We will
now consider an example of a mobile phone manufacturer to understand our notion
of KB and PS reuse. The manufacturer has two factories, three suppliers and two
delivery companies to transport phones to wholesalers around the world (Figure 1).

~EJEJ~ [c_nl... I One of 60 Plausible
ff"lnCC' MC'1. 1CO C'" Ewupcu deli R. an Combinations

~ ~EJ S [c_nw.]
K_ Itr a.1n

KBs
" '10<7

PSs e- K _

@] D 11:0 eleetor ,..... e--
0- -_all

SC.... .,.r - _all,......
[E]~~

5<__

,......
"*'"- DoI'"'J- Pncc tJrr-IlC)' F~lJl;JMh.)' """"'.

Figure 1. Combining KBs with selected PS

Along with the domain-specific KBs, the system also consists of background
knowledge (e.g., ISO 9001, Safety Standards), and constraint relaxation rules to

