[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Interval Analysis for Optimization of Dynamical Systems

  • Reference work entry
Encyclopedia of Optimization
  • 270 Accesses

Article Outline

Introduction

Formulation

Methods

  Taylor Models

  Verifying Solver for Parametric ODEs

  Deterministic Global Optimization Method

Cases

  Catalytic Cracking of Gas Oil

  Singular Control Problem

Conclusions

References

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 1,529.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
GBP 2,028.40
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adjiman CS, Androulakis IP, Floudas CA, Neumaier A (1998) A global optimization method, αBB, for general twice-differentiable NLPs–I. Theoretical advances. Comput Chem Eng 22:1137–1158

    Article  Google Scholar 

  2. Adjiman CS, Dallwig S, Floudas CA, Neumaier A (1998) A global optimization method, αBB, for general twice-differentiable NLPs–II. Implementation and computational results. Comput Chem Eng 22:1159–1179

    Article  Google Scholar 

  3. Brusch R, Schappelle R (1973) Solution of highly constrained optimal control problems using nonlinear programming. AIAA J 11:135–136

    Article  Google Scholar 

  4. Chachuat B, Latifi MA (2004) A new approach in deteterministic global optimisation of problems with ordinary differential equations. In: Floudas CA, Pardalos PM (eds) Frontiers in Global Optimization. Kluwer, Dordrecht

    Google Scholar 

  5. Corliss GF, Rihm R (1996) Validating an a priori enclosure using high-order Taylor series. In: Alefeld G, Frommer A (eds) Scientific Computing : Computer Arithmetic, and Validated Numerics. Akademie Verlag, Berlin

    Google Scholar 

  6. Esposito WR, Floudas CA (2000) Deterministic global optimization in nonlinear optimal control problems. J Global Optim 17:97–126

    Article  MathSciNet  MATH  Google Scholar 

  7. Esposito WR, Floudas CA (2000) Global optimization for the parameter estimation of differential-algebraic systems. Ind Eng Chem Res 39:1291–1310

    Article  Google Scholar 

  8. Lin Y, Stadtherr MA (2006) Determinstic global optimization for parameter estimation of dynamic systems. Ind Eng Chem Res 45:8438–8448

    Article  Google Scholar 

  9. Lin Y, Stadtherr MA (2007) Deterministic global optimization of nonlinear dynamic systems. AIChE J 53:866–875

    Article  Google Scholar 

  10. Lin Y, Stadtherr MA (2007) Validated solutions of initial value problems for parametric ODEs. Appl Num Math 58:1145–1162

    Article  MathSciNet  Google Scholar 

  11. Luus R (1990) Optimal control by dynamic programming using systematic reduction in grid size. Int J Control 51:995–1013

    Article  MathSciNet  MATH  Google Scholar 

  12. Luus R, Cormack DE (1972) Multiplicity of solutions resulting from the use of variational methods in optimal control problems. Can J Chem Eng 50:309–311

    Google Scholar 

  13. Makino K, Berz M (1999) Efficient control of the dependency problem based on Taylor model methods. Reliab Comput 5:3–12

    Article  MathSciNet  MATH  Google Scholar 

  14. Makino K, Berz M (2003) Taylor models and other validated functional inclusion methods. Int J Pure Appl Math 4:379–456

    MathSciNet  MATH  Google Scholar 

  15. Makino K, Berz M (2005) Verified global optimization with Taylor model-based range bounders. Trans Comput 11:1611–1618

    Google Scholar 

  16. Moore RE (1966) Interval Analysis. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  17. Nedialkov NS, Jackson KR, Corliss GF (1999) Validated solutions of initial value problems for ordinary differential equations. Appl Math Comput 105:21–68

    Article  MathSciNet  MATH  Google Scholar 

  18. Nedialkov NS, Jackson KR, Pryce JD (2001) An effective high-order interval method for validating existence and uniqueness of the solution of an IVP for an ODE. Reliab Comput 7:449–465

    Article  MathSciNet  MATH  Google Scholar 

  19. Neumaier A (2003) Taylor forms – Use and limits. Reliab Comput 9:43–79

    Article  MathSciNet  MATH  Google Scholar 

  20. Neuman C, Sen A (1973) A suboptimal control algorithm for constraint problems using cubic splines. Automatica 9:601–613

    Article  MATH  Google Scholar 

  21. Papamichail I, Adjiman CS (2002) A rigorous global optimization algorithm for problems with ordinary differential equations. J Global Optim 24:1–33

    Article  MathSciNet  MATH  Google Scholar 

  22. Papamichail I, Adjiman CS (2004) Global optimization of dynamic systems. Comput Chem Eng 28:403–415

    Article  Google Scholar 

  23. Singer AB (2006) Personal communication

    Google Scholar 

  24. Singer AB, Barton PI (2006) Bounding the solutions of parameter dependent nonlinear ordinary differential equations. SIAM J Sci Comput 27:2167–2182

    Article  MathSciNet  MATH  Google Scholar 

  25. Singer AB, Barton PI (2006) Global optimization with nonlinear ordinary differential equations. J Global Optim 34:159–190

    Article  MathSciNet  MATH  Google Scholar 

  26. Teo K, Goh G, Wong K (1991) A unified computational approach to optimal control problems. Pitman Monographs and Surveys in Pure and Applied Mathematics, vol 55. Wiley, New York

    MATH  Google Scholar 

  27. Tjoa TB, Biegler LT (1991) Simultaneous solution and optimization strategies for parameter estimation of differential-algebraic equation systems. Ind Eng Chem Res 30:376

    Article  Google Scholar 

  28. Tsang TH, Himmerlblau DM, Edgar TF (1975) Optimal control via collocation and nonlinear programming. Int J Control 21:763–768

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this entry

Cite this entry

Lin, Y., Stadtherr, M.A. (2008). Interval Analysis for Optimization of Dynamical Systems . In: Floudas, C., Pardalos, P. (eds) Encyclopedia of Optimization. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-74759-0_298

Download citation

Publish with us

Policies and ethics