[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Advertisement

Exact penalty functions with multidimensional penalty parameter and adaptive penalty updates

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

We present a general theory of exact penalty functions with vectorial (multidimensional) penalty parameter for optimization problems in infinite dimensional spaces. In comparison with the scalar case, the use of vectorial penalty parameters provides much more flexibility, allows one to adaptively and independently take into account the violation of each constraint during optimization process, and often leads to a better overall performance of an optimization method using an exact penalty function. We obtain sufficient conditions for the local and global exactness of penalty functions with vectorial penalty parameters and study convergence of global exact penalty methods with several different penalty updating strategies. In particular, we present a new algorithmic approach to an analysis of the global exactness of penalty functions, which contains a novel characterisation of the global exactness property in terms of behaviour of sequences generated by certain optimization methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Burachik, R.S., Kaya, C.Y., Price, C.J.: A primal-dual penalty method via rounded weighted-\(\ell _1\) Lagrangian duality. Optimization (2021). https://doi.org/10.1080/02331934.2021.1934680

  2. Byrd, R.H., Nocedal, J., Waltz, R.A.: Steering exact penalty methods for nonlinear programming. Optim. Methods Softw. 23, 197–213 (2008)

    Article  MathSciNet  Google Scholar 

  3. Cominetti, R.: Metric regularity, tangent sets, and second-order optimality conditions. Appl. Math. Optim. 21, 265–287 (1990)

    Article  MathSciNet  Google Scholar 

  4. Conn, A.R., N. I. M. Gould, Toint, P.L.: Trust-Region Methods. SIAM, Philadelphia (2000)

  5. Demyanov, V.F.: Nonsmooth optimization. In: Di Pillo, G., Schoen, F. (eds.) Nonlinear optimization. Lecture notes in mathematics, vol. 1989, pp. 55–163. Springer-Verlag, Berlin (2010)

    Chapter  Google Scholar 

  6. Dolgopolik, M.V.: A unifying theory of exactness of linear penalty functions. Optim. 65, 1167–1202 (2016)

    Article  MathSciNet  Google Scholar 

  7. Dolgopolik, M.V.: A unifying theory of exactness of linear penalty functions II: parametric penalty functions. Optim. 66, 1577–1622 (2017)

    Article  MathSciNet  Google Scholar 

  8. Dolgopolik, M.V.: A unified approach to the global exactness of penalty and augmented Lagrangian functions I: parametric exactness. J. Optim. Theory Appl. 176, 728–744 (2018)

    Article  MathSciNet  Google Scholar 

  9. Dolgopolik, M.V.: A unified approach to the global exactness of penalty and augmented Lagrangian functions II: extended exactness. J. Optim. Theory Appl. 176, 745–762 (2018)

    Article  MathSciNet  Google Scholar 

  10. Dolgopolik, M.V.: Exact penalty functions for optimal control problems II: Exact penalization of terminal and pointwise state constraints. Optim. Control Appl. Methods 41, 898–947 (2020)

    Article  MathSciNet  Google Scholar 

  11. Dolgopolik, M.V., Fominyh, A.: Exact penalty functions for optimal control problems I: main theorem and free-endpoint problems. Optim. Control Appl. Meth. 40, 1018–1044 (2019)

    Article  MathSciNet  Google Scholar 

  12. Eremin, I.I.: Penalty method in convex programming. Soviet Math. Dokl. 8, 459–462 (1966)

    MATH  Google Scholar 

  13. Fernández, A., Naranjo, F.: Strictly positive linear functional and representation of Fréchet lattices with the Lebesgue property. Indagationes Mathematicae 10, 383–391 (1999)

    Article  MathSciNet  Google Scholar 

  14. Han, S.P., Mangasarian, O.L.: Exact penalty functions in nonlinear programming. Math. Program. 17, 251–269 (1979)

    Article  MathSciNet  Google Scholar 

  15. Le Thi, H.A., Pham Dinh, T., Van Ngai, H.: Exact penalty and error bounds in DC programming. J. Glob. Optim. 52, 509–535 (2012)

    Article  MathSciNet  Google Scholar 

  16. Lipp, T., Boyd, S.: Variations and extension of the convex-concave procedure. Optim. Eng. 17, 263–287 (2016)

    Article  MathSciNet  Google Scholar 

  17. Lucidi, S., Rinaldi, F.: An exact penalty global optimization approach for mixed-integer programming problems. Optim. Lett. 7, 297–307 (2013)

    Article  MathSciNet  Google Scholar 

  18. Moreau, J.J.: Décomposition orthogonale d’un espace hilbertien selon deux cônes mutuellement polaires. Competes rendus hebdomadaires des séances de l’Académie des sciences 255, 238–240 (1962)

    MATH  Google Scholar 

  19. Di Pillo, G., Grippo, L.: Exact penalty functions in constrained optimization. SIAM J. Control Optim. 27, 1333–1360 (1989)

    Article  MathSciNet  Google Scholar 

  20. Di Pillo, G., Lucidi, S., Rinaldi, F.: An approach to constrained global optimization based on exact penalty functions. J. Glob. Optim. 54, 251–260 (2012)

    Article  MathSciNet  Google Scholar 

  21. van Casteren, J.A.: Strictly positive functionals on vector lattices. Proc. London Math. Soc. 39, 51–72 (1979)

    Article  MathSciNet  Google Scholar 

  22. Rubinov, A., Yang, X.: Lagrange-Type Functions in Constrained Non-Convex Optimization. Kluwer Academic Publishers, Boston (2003)

    Book  Google Scholar 

  23. Soltan, V.: Moreau-type characterizations of polar cones. Linear Algebra Appl. 567, 45–62 (2019)

    Article  MathSciNet  Google Scholar 

  24. Strekalovsky, A.S.: Global optimality conditions and exact penalization. Optim. Lett. 13, 597–615 (2019)

    Article  MathSciNet  Google Scholar 

  25. Zangwill, W.I.: Nonlinear programming via penalty functions. Manag. Sci. 13, 344–358 (1967)

    Article  MathSciNet  Google Scholar 

  26. Zaslavski, A.J.: Optimization on Metric and Normed Spaces. Springer, New York (2010)

    Book  Google Scholar 

  27. Zaslavski, A.J.: Exact penalty property in optimization with mixed constraints via variational analysis. SIAM J. Optim. 23, 170–187 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Dolgopolik.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dolgopolik, M.V. Exact penalty functions with multidimensional penalty parameter and adaptive penalty updates. Optim Lett 16, 1281–1300 (2022). https://doi.org/10.1007/s11590-021-01777-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-021-01777-2

Keywords