[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Face Identification

  • Reference work entry
  • First Online:
Computer Vision

Related Concepts

Face Identification

Definition

Face identification is to automatically identify a person by computers based on a query face image. In order to determine the identity of the query face image, the face images of all the registered persons in the database are compared against the query face image and are re-ranked based on the similarities.

Background

Face identification is a powerful technology with wide applications to biometrics, surveillance, law enforcement, human-computer interaction, and image and video search. It is often confused with another research topic called face verification. Face verification is to validate a claimed identity based on the query image. It compares the query image against the face images whose identity is claimed and decides to either accept or reject the claimed identity. Face identification involves one-to-many matches, while face verification involves one-to-one matches. As the number of registered persons in the database increases, both...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 549.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li SZ, Jain A (eds) (2004) Handbook of face recognition. Springer, New York

    Google Scholar 

  2. Zhao W (2003) Face recognition: a literature survey. ACM Comput Surv 35:399–458

    Article  Google Scholar 

  3. Viola P, Jones MJ (2004) Robust real-time face detection. Int J Comput Vis 57:137–154

    Article  Google Scholar 

  4. Cootes TF, Taylor CJ (2004) Statistical models of appearance for computer vision. Technical report, imaging science and biomedical engineering, University of Manchester

    Google Scholar 

  5. Hua G, Akbarzadeh A (2009) A robust elastic and partial matching metric for face recognition. In: Proceedings of the IEEE international conference on computer vision, Kyoto

    Google Scholar 

  6. Wiskott L, Fellous J, Kruger N, Malsburg C (1997) Face recognition by elastic bunch graph. IEEE Trans PAMI 19:775–779

    Article  Google Scholar 

  7. Ahonen T, Hadid A, Pietikainen M (2006) Face description with local binary patterns: application to face recognition. IEEE Trans PAMI 28:2037–2041

    Article  Google Scholar 

  8. Ojala T, Peitikainen M, Maenpaa T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans PAMI 24:971–987

    Article  Google Scholar 

  9. Zhang W, Shan S, Gao W, Chen X, Zhang H (2005) Local gabor binary pattern histogram sequence (LGBPHS): a novel non-statistical model for face representation and recognition. In: Proceedings of the IEEE international conference on computer vision, Beijing

    Google Scholar 

  10. Tan X, Triggs B (2010) Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Trans Image Process 19(6):1635–1650

    Article  MathSciNet  Google Scholar 

  11. Cao Z, Yin Q, Tang X, Sun J (2010) Face recognition with learning-based descriptor. In: Proceedings of the IEEE international conference on computer vision and pattern recognition (CVPR), Providence

    Book  Google Scholar 

  12. Kumar N, Berg AC, Belhumeur P (2009) Attribute and simile classifiers for face verification. In: Proceedings of the IEEE international conference on computer vision, Kyoto

    Book  Google Scholar 

  13. Lin D, Tang X (2006) Recognizing high resolution faces: from macrocosm to microcosm. In: Proceedings of the European conference on computer vision (ECCV), Graz

    Google Scholar 

  14. Turk M, Pentland A (1991) Face recognition using eigenfaces. J Cognit Neurosci 3:71–86

    Article  Google Scholar 

  15. Moghaddam B, Jebara T, Pentland A (2000) Bayesian face recognition. Pattern Recognit 33:1771–1782

    Article  Google Scholar 

  16. Belhumeur P, Hespanda J, Kriegman D (1997) Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans PAMI 19:711–720

    Article  Google Scholar 

  17. Wang X, Tang X (2004) Dual-space linear discriminant analysis for face recognition. In: Proceedings of the IEEE international conference on computer vision and pattern recognition (CVPR), Washington, DC

    Google Scholar 

  18. Chen L, Liao H, Ko M, Lin J, Yu G (2000) A new lda-based face recognition system which can solve the small sample size problem. J Pattern Recognit 33:1713–1726

    Article  Google Scholar 

  19. Yu H, Yang J (2001) A direct lda algorithm for high-dimensional data – with application to face recognition. Pattern Recognit 34:2067–2070

    Article  MATH  Google Scholar 

  20. Wang X, Tang X (2003) Unified subspace analysis for face recognition. In: Proceedings of the IEEE international conference on computer vision, Nice

    Google Scholar 

  21. Wang X, Tang X (2004) A unified framework for subspace face recognition. IEEE Trans PAMI 26:1222–1228

    Article  Google Scholar 

  22. Wang X, Tang X (2004) Random sampling lda for face recognition. In: Proceedings of the IEEE international conference on computer vision and pattern recognition (CVPR), Washington, DC

    Google Scholar 

  23. Wang X, Tang X (2006) Random sampling for subspace face recognition. Int J Comput Vis 70:91–104

    Article  Google Scholar 

  24. Su Y, Shan S, Chen X, Gao W (2007) Hierarchical ensemble of global and local classifiers for face recognition. In: Proceedings of the IEEE international conference on computer vision, Rio de Janeiro

    Book  Google Scholar 

  25. He X, Yan S, Hu Y, Niyogi P, Zhang H (2005) Face recognition using laplacianfaces. IEEE Trans PAMI 27:328–340

    Article  Google Scholar 

  26. Heisele B, Ho P, Poggio T (2001) Face recognition with support vector machines: Global versus component-based approach. In: Proceedings of the IEEE international conference on computer vision, Vancouver

    Google Scholar 

  27. Wang X, Zhang C, Zhang Z (2009) Boosted multi-task learning for face verification with applications to web images and videos search. In: Proceedings of the IEEE international conference on computer vision and pattern recognition (CVPR), Miami

    Google Scholar 

  28. Wright J, Yang AY, Ganesh A, Sastry SS, Ma Y (2009) Robust face recognition via sparse representation. IEEE Trans PAMI 31:210–227

    Article  Google Scholar 

  29. Li Z, Lin D, Tang X (2009) Nonparametric discriminant analysis for face recognition. IEEE Trans PAMI 31:755–761

    Article  Google Scholar 

  30. Flynn P, Chang K, Bowyer K (2006) A survey of approaches and challenges in 3d and multi-modal 3d+2d face recognition. Comput Vis Image Underst 101:1–5

    Article  Google Scholar 

  31. Tang X, Li Z (2004) Frame synchronization and multi-level subspace analysis for video-based face recognition. In: Proceedings of the IEEE international conference on computer vision and pattern recognition (CVPR), Washington, DC

    Google Scholar 

  32. Lee K, Ho J, Yang M, Kriegman D (2003) Video-based face recognition using probabilistic appearance manifolds. In: Proceedings of the IEEE international conference on computer vision and pattern recognition (CVPR), Madison

    Google Scholar 

  33. Li S, Chu R, Liao S, Zhang L (2007) Illumination invariant face recognition using near-infrared images. IEEE Trans PAMI 29:627–639

    Article  Google Scholar 

  34. Lin D, Tang X (2006) Inter-modality face recognition. In: Proceedings of the European conference on computer vision (ECCV), Graz

    Book  Google Scholar 

  35. Tang X, Wang X (2003) Face sketch synthesis and recognition. In: Proceedings of the IEEE international conference on computer vision, Nice

    Google Scholar 

  36. Wang X, Tang X (2009) Face photo-sketch synthesis and recognition. IEEE Trans PAMI 31(11):1955–1967

    Article  Google Scholar 

  37. Phillips, PJ, Flynn PJ, Bowyer KW (2005) Overview of the face recognition grand challenge. In: Proceedings of the IEEE international conference on computer vision and pattern recognition (CVPR), San Diego

    Book  Google Scholar 

  38. Gross R, Matthews I, Cohn J, Kanade T, Baker S (2008) Multi-pie. Image Vis Comput 26:15–26

    Article  Google Scholar 

  39. Huang GB, Manu R, Berg T, Learned-Miller E (2007) Labeled faces in the wild: A database for studying face recognition in unconstrained environments. Technical report, University of Massachusetts, Amherst

    Google Scholar 

  40. Messer K, Matas J, Kittler J, Luettin J, Maitre G (1999) Xm2vtsdb: the extended m2vts database. In: Proceedings of the IEEE international conference on audio and video-based biometric person authentication, Washington, DC

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Wang, X. (2014). Face Identification. In: Ikeuchi, K. (eds) Computer Vision. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-31439-6_354

Download citation

Publish with us

Policies and ethics