Abstract
We give a precise average-case analysis of a complete polynomial factorization chain over finite fields by methods based on generating functions and singularity analysis.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Berlekamp, E. R. Algebraic Coding Theory. Mc Graw-Hill, 1968. Revised edition, 1984.
Buchmann, J. Complexity of algorithms in number theory. In Number Theory: Proceedings of the First Conference of the Canadian Number Theory Association (1990), Walter de Gruyter, pp. 37–53.
Cantor, D. G., and Zassenhauss, H. A new algorithm for factoring polynomials over finite fields. Mathematics of Computation 36 (1981), 587–592.
Car, M. Factorisation dans Fq[x]. Comptes-Rendus de l'Académie des Sciences 294 (Ser. I) (1982), 147–150.
Carlitz, L. The arithmetic of polynomials in a Galois field. American Journal of Mathematics 54 (1932), 39–50.
Chor, B., and Rivest, R. A knapsack type public key cryptosystem based on on arithmetics over finite fields. IEEE Transactions on Information Theory 34 (1988), 901–909.
Comtet, L.Advanced Combinatorics. Reidel, Dordrecht, 1974.
Dedekind, R. Abriss einer Theorie der höhern Congruenzen in Bezug auf einen reellen Primzahlmodulus. Journal für die reine und angewandte Mathematik 54 (1857), 1–26.
Flajolet, P., and Odlyzko, A. M. Singularity analysis of generating functions. SIAM Journal on Discrete Mathematics 3, 2 (1990), 216–240.
Flajolet, P., and Soria, M. Gaussian limiting distributions for the number of components in combinatorial structures. Journal of Combinatorial Theory, Series A 53 (1990), 165–182.
Gauss, C. F.Untersuchungen úber höhere Mathematik. Chelsea, New York, 1889.
Geddes, K. O., Czapor, S. R., and Labahn, G.Algorithms for Computer Algebra. Kluwer Academic Publishers, Boston, 1992.
Greene, D. H., and Knuth, D. E.Mathematics for the analysis of algorithms, second ed. Birkhauser, Boston, 1982.
Knopfmacher, J., and Knopfmacher, A. Counting irreducible factors of polynomials over a finite field. Discrete Mathematics 112 (1993), 103–118.
Knuth, D. E. The Art of Computer Programming, vol. 3: Sorting and Searching. Addison-Wesley, 1973.
Knuth, D. E. The Art of Computer Programming, 2nd ed., vol. 2: Seminumerical Algorithms. Addison-Wesley, 1981.
Knuth, D. E., and Pardo, L. T. Analysis of a simple factorization algorithm. Theoretical Computer Science 3 (1976), 321–348.
Lenstra, H. W. On the Chor Rivest cryptosystem. Journal of Cryptology 3 (1991), 149–155.
Lidl, R., and Niederreiter, H. Finite Fields, vol. 20 of Encyclopedia of Mathematics and its Applications. Addison-Wesley, 1983.
Odlyzko, A. M. Discrete logarithms and their cryptographic significance. In Advances in Cryptology (1985), Lecture Notes in Computer Science, Springer Verlag, pp. 224–314.
Odlyzko, A. M. Asymptotic enumeration methods. In Handbook of Combinatorics, M. G. R. Graham and L. Lovász, Eds., vol. II. Elsevier, Amsterdam, 1995, pp. 1063–1229.
Postnikov, A. G. Tauberian theory and its applications, vol. 144 of Proceedings of the Steklov Institute of Mathematics. American Mathematical Society, 1980.
Shepp, L. A., and Lloyd, S. P. Ordered cycle lengths in a random permutation. Transactions of the American Mathematical Society 121 (1966), 340–357.
Shoup, V. A new polynomial factorization algorithm and its implementation. Preprint, 1994.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1996 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Flajolet, P., Gourdon, X., Panario, D. (1996). Random polynomials and polynomial factorization. In: Meyer, F., Monien, B. (eds) Automata, Languages and Programming. ICALP 1996. Lecture Notes in Computer Science, vol 1099. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-61440-0_131
Download citation
DOI: https://doi.org/10.1007/3-540-61440-0_131
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-61440-1
Online ISBN: 978-3-540-68580-7
eBook Packages: Springer Book Archive