[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Permutation polynomials and factorization

  • Published:
Cryptography and Communications Aims and scope Submit manuscript

Abstract

We discuss a special class of permutation polynomials over finite fields focusing on some recent work on their factorization. In particular we obtain permutation polynomials with various factorization patterns that are favoured for applications. We also address a wide range of problems of current interest concerning irreducible factors of the terms of sequences and iterations of such permutation polynomials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aksoy, E., Çeşmelioğlu, A., Meidl, W., Topuzoğlu, A.: On the Carlitz rank of permutation polynomials. Finite Fields Appl. 15, 428–440 (2009)

    Article  MathSciNet  Google Scholar 

  2. Anbar, N., Odz̆ak, A., Patel, V., Quoos, L., Somoza, A., Topuzoğlu, A.: On the differences of permutation polynomials. Finite Fields Appl. 49, 132–142 (2018)

    Article  MathSciNet  Google Scholar 

  3. Anbar, N., Odz̆ak, A., Patel, V., Quoos, L., Somoza, A., Topuzoğlu, A.: On the Carlitz Rank of Permutation Polynomials: Recent Developments. In: Bouw, I., Ozman, E., Johnson-Leung, J., Newton, R (eds.) Women in Numbers Europe II. Association for Women in Mathematics Series 11, pp 39-55, Springer, Cham (2018)

  4. Benedetto, R., Ingram, P., Jones, R., Manes, M., Silverman, J.H., Tucker, T.: Current trends and open problems in arithmetic dynamics. Bull. Am. Math. Soc. 56, 611–685 (2019)

    Article  MathSciNet  Google Scholar 

  5. Bilu, Y., Hanrot, G., Voutier, P.M.: Existence of primitive divisors of Lucas and Lehmer numbers. J. Reine Angew. Math. 539, 75–122 (2001)

    MathSciNet  MATH  Google Scholar 

  6. Budaghyan, L., Carlet, C., Helleseth, T.: On bent functions associated to AB Functions. Proc IEEE Inf. Theory Workshop, pp 150–154 (2011)

  7. Budaghyan, L., Carlet, C., Helleseth, T., Li, N.: On the (non-)existence of APN (n,n)-functions of algebraic degree n. Proc. IEEE Int. Symp. Inf. Theory, pp 480–484 (2016)

  8. Budaghyan, L., Carlet, C., Helleseth, T., Kaleyski, N.S.: On the distance between APN functions. IEEE Trans. Inf. Theory. https://doi.org/10.1109/TIT.2020.2983684 (2020)

  9. Carlitz, L.: Permutations in a finite field. Proc. Am. Math. Soc. 4, 538 (1953)

    Article  MathSciNet  Google Scholar 

  10. Carmicheal, R.D.: On the numerical factors of the arithmetic forms αn ± βn. Ann. of Math. 15, 30–70 (1913)

    Article  MathSciNet  Google Scholar 

  11. Chowla, S., Zassenhaus, H.: Some conjectures concerning finite fields. Nor. Vidensk. Selsk. Forh. (Trondheim) 41, 34–35 (1968)

    MathSciNet  MATH  Google Scholar 

  12. Cohen, S.D.: Proof of a conjecture of Chowla and Zassenhaus on permutation polynomials. Can. Math. Bull. 33, 230–234 (1990)

    Article  MathSciNet  Google Scholar 

  13. Cohen, S.D., Mullen, G.L., Shiue, P. J. -S.: The difference between permutation polynomials over finite fields. Proc. Am. Math. Soc. 123, 2011–2015 (1995)

    Article  MathSciNet  Google Scholar 

  14. Çeşmelioğlu, A., Meidl, W., Topuzoğlu, A.: On the cycle structure of permutation polynomials. Finite Fields Appl. 14, 593–614 (2008)

    Article  MathSciNet  Google Scholar 

  15. Çeşmelioğlu, A., Meidl, W., Topuzoğlu, A.: Permutations with prescribed properties. J. Comput. Appl. Math. 259, 536–545 (2014)

    Article  MathSciNet  Google Scholar 

  16. Flajolet, P., Gourdon, X., Panario, D.: The complete analysis of a polynomial factorization algorithm over finite fields. J. Algorithms 40(1), 37–81 (2001)

    Article  MathSciNet  Google Scholar 

  17. Galbraith, S.: Mathematics of Public Key Cryptography. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  18. Garefalakis, T., Panario, D.: The index calculus method using non-smooth polynomials. Math. Comput. 70(235), 1253–1264 (2001)

    Article  MathSciNet  Google Scholar 

  19. Gómez-Pérez, D., Ostafe, A., Shparlinski, I.E.: On irreducible divisors of iterated polynomials. Rev. Mat. Iberoam. 30, 1123–1134 (2014)

    Article  MathSciNet  Google Scholar 

  20. Gómez-Pérez, D., Ostafe, A., Topuzoğlu, A.: On the Carlitz rank of permutations of \(\mathbb {F}_{q}\) and pseudorandom sequences. J. Complexity 30, 279–289 (2014)

    Article  MathSciNet  Google Scholar 

  21. Gómez-Pérez, D., Ostafe, A., Sha, M.: The arithmetic of consecutive polynomial sequences over finite fields. Finite Fields Appl. 50, 35–65 (2018)

    Article  MathSciNet  Google Scholar 

  22. Grémy, L.: Sieve Algorithms for the Discrete Logarithm in Medium Characteristic Finite Fields. PhD Thesis, University of Lorraine, Nancy, France (2017)

  23. Hou, X.: Permutation polynomials over finite fields - a survey of recent advances. Finite Fields Appl. 32, 82–119 (2015)

    Article  MathSciNet  Google Scholar 

  24. Ingram, P., Silverman, J.H.: Primitive divisors in arithmetic dynamics. Math. Proc. Camb. Philos. Soc. 146, 289–302 (2009)

    Article  MathSciNet  Google Scholar 

  25. Işık, L., Topuzoğlu, A., Winterhof, A.: Complete mappings and Carlitz rank. Des. Codes Cryptogr. 85, 121–128 (2017)

    Article  MathSciNet  Google Scholar 

  26. Işık, L., Winterhof, A.: Carlitz rank and index of permutation polynomials. Finite Fields Appl. 49, 156–165 (2018)

    Article  MathSciNet  Google Scholar 

  27. Kalaycı, T.: On Factorization of Some Permutation Polynomials over Finite Fields. PhD Thesis. Sabancı University, İstanbul, Turkey (2019)

    Google Scholar 

  28. Kalaycı, T., Stichtenoth, H., Topuzoğlu, A.: Irreducible factors of a class of permutation polynomials. Finite Fields Appl. 63(101647), 12 (2020)

    MathSciNet  MATH  Google Scholar 

  29. Kaleyski, N.S.: Changing APN functions at two points. Cryptogr. Commun. 11, 1165–1184 (2019)

    Article  MathSciNet  Google Scholar 

  30. Masuda, A., Panario, D.: Sequences of consecutive smooth polynomials over a finite field. Proc. Am. Math. Soc. 125, 1271–1277 (2007)

    Article  MathSciNet  Google Scholar 

  31. Meidl, W., Topuzoğlu, A.: On the Inversive Pseudorandom Number Generator. In: Devroye, L., Karasözen, B., Kohler, M., Korn, R (eds.) Recent Developments in Applied Probability and Statistics, pp 103–125. Physica, Heidelberg (2010)

  32. Mullen, G.L., Panario, D.: Handbook of Finite Fields. Chapman and Hall, London (2013)

    Book  Google Scholar 

  33. Muratović-Ribić, A., Pasalic, E.: A note on complete polynomials over finite fields and their applications in cryptography. Finite Fields Appl. 25, 306–315 (2014)

    Article  MathSciNet  Google Scholar 

  34. Nikova, S., Nikov, V., Rijmen, V.: Decomposition of permutations in a finite field. Crytogr. Commun. 11, 379–384 (2019)

    Article  MathSciNet  Google Scholar 

  35. Ostafe, A.: Iterations of Rational Functions: Some Algebraic and Arithmetic Aspects. In: Charpin, P., Pott, A., Winterhof, A (eds.) Finite Fields and Their Applications. Radon Series on Computational and Applied Mathematics 11, pp 197–231. De Gruyter, Berlin (2013)

  36. Pausinger, F., Topuzoğlu, A.: Permutations of Finite Fields and Uniform Distribution Modulo 1. In: Niederreiter, H., Ostafe, A., Panario, D., Winterhof, A (eds.) Algebraic Curves and Finite Fields.Radon Series on Computational and Applied Mathematics 16, pp 145–157. De Gruyter, Berlin (2014)

  37. Pausinger, F., Topuzoğlu, A.: On the discrepancy of two families of permuted van der Corput sequences. Unif. Distrib. Theory 13(1), 47–64 (2018)

    Article  MathSciNet  Google Scholar 

  38. Rice, B: Primitive prime divisors in polynomial arithmetic dynamics. Integers 7A26, 16 (2007)

    MathSciNet  MATH  Google Scholar 

  39. Shparlinski, I.E.: Finite Fields: Theory and Computation. Kluwer, Dordrecht (1999)

    Book  Google Scholar 

  40. Stewart, C.L.: Primitive Divisors of Lucas and Lehmer Sequences. In: Baker, A., Masser, D. W. (eds.) Transcendence Theory: Advances and Applications, pp 79–92. Academic Press, New York (1977)

  41. Topuzoğlu, A.: Carlitz rank of permutations of finite fields: a survey. J. Symbolic Comput. 64, 53–66 (2014)

    Article  MathSciNet  Google Scholar 

  42. Vaudenay, S.: On the Lai-Massey Scheme. In: Lam, K. -Y., Okamoto, E., Xing, C (eds.) Advances in Cryptology - ASIACRYPT 1999. Lecture Notes in Computer Science 1716, pp 8–19. Springer, Heidelberg (1999)

  43. Von zur Gathen, J., Panario, D.: Factoring polynomials over finite fields: a survey. J. Symbolic Comput. 31(1-2), 3–17 (2001)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alev Topuzoğlu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection: Boolean Functions and Their Applications IV

Guest Editors: Lilya Budaghyan and Tor Helleseth

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalaycı, T., Stichtenoth, H. & Topuzoğlu, A. Permutation polynomials and factorization. Cryptogr. Commun. 12, 913–934 (2020). https://doi.org/10.1007/s12095-020-00446-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12095-020-00446-y

Keywords

Mathematics Subject Classification (2010)

Navigation