Abstract
We discuss a special class of permutation polynomials over finite fields focusing on some recent work on their factorization. In particular we obtain permutation polynomials with various factorization patterns that are favoured for applications. We also address a wide range of problems of current interest concerning irreducible factors of the terms of sequences and iterations of such permutation polynomials.
Similar content being viewed by others
References
Aksoy, E., Çeşmelioğlu, A., Meidl, W., Topuzoğlu, A.: On the Carlitz rank of permutation polynomials. Finite Fields Appl. 15, 428–440 (2009)
Anbar, N., Odz̆ak, A., Patel, V., Quoos, L., Somoza, A., Topuzoğlu, A.: On the differences of permutation polynomials. Finite Fields Appl. 49, 132–142 (2018)
Anbar, N., Odz̆ak, A., Patel, V., Quoos, L., Somoza, A., Topuzoğlu, A.: On the Carlitz Rank of Permutation Polynomials: Recent Developments. In: Bouw, I., Ozman, E., Johnson-Leung, J., Newton, R (eds.) Women in Numbers Europe II. Association for Women in Mathematics Series 11, pp 39-55, Springer, Cham (2018)
Benedetto, R., Ingram, P., Jones, R., Manes, M., Silverman, J.H., Tucker, T.: Current trends and open problems in arithmetic dynamics. Bull. Am. Math. Soc. 56, 611–685 (2019)
Bilu, Y., Hanrot, G., Voutier, P.M.: Existence of primitive divisors of Lucas and Lehmer numbers. J. Reine Angew. Math. 539, 75–122 (2001)
Budaghyan, L., Carlet, C., Helleseth, T.: On bent functions associated to AB Functions. Proc IEEE Inf. Theory Workshop, pp 150–154 (2011)
Budaghyan, L., Carlet, C., Helleseth, T., Li, N.: On the (non-)existence of APN (n,n)-functions of algebraic degree n. Proc. IEEE Int. Symp. Inf. Theory, pp 480–484 (2016)
Budaghyan, L., Carlet, C., Helleseth, T., Kaleyski, N.S.: On the distance between APN functions. IEEE Trans. Inf. Theory. https://doi.org/10.1109/TIT.2020.2983684 (2020)
Carlitz, L.: Permutations in a finite field. Proc. Am. Math. Soc. 4, 538 (1953)
Carmicheal, R.D.: On the numerical factors of the arithmetic forms αn ± βn. Ann. of Math. 15, 30–70 (1913)
Chowla, S., Zassenhaus, H.: Some conjectures concerning finite fields. Nor. Vidensk. Selsk. Forh. (Trondheim) 41, 34–35 (1968)
Cohen, S.D.: Proof of a conjecture of Chowla and Zassenhaus on permutation polynomials. Can. Math. Bull. 33, 230–234 (1990)
Cohen, S.D., Mullen, G.L., Shiue, P. J. -S.: The difference between permutation polynomials over finite fields. Proc. Am. Math. Soc. 123, 2011–2015 (1995)
Çeşmelioğlu, A., Meidl, W., Topuzoğlu, A.: On the cycle structure of permutation polynomials. Finite Fields Appl. 14, 593–614 (2008)
Çeşmelioğlu, A., Meidl, W., Topuzoğlu, A.: Permutations with prescribed properties. J. Comput. Appl. Math. 259, 536–545 (2014)
Flajolet, P., Gourdon, X., Panario, D.: The complete analysis of a polynomial factorization algorithm over finite fields. J. Algorithms 40(1), 37–81 (2001)
Galbraith, S.: Mathematics of Public Key Cryptography. Cambridge University Press, Cambridge (2002)
Garefalakis, T., Panario, D.: The index calculus method using non-smooth polynomials. Math. Comput. 70(235), 1253–1264 (2001)
Gómez-Pérez, D., Ostafe, A., Shparlinski, I.E.: On irreducible divisors of iterated polynomials. Rev. Mat. Iberoam. 30, 1123–1134 (2014)
Gómez-Pérez, D., Ostafe, A., Topuzoğlu, A.: On the Carlitz rank of permutations of \(\mathbb {F}_{q}\) and pseudorandom sequences. J. Complexity 30, 279–289 (2014)
Gómez-Pérez, D., Ostafe, A., Sha, M.: The arithmetic of consecutive polynomial sequences over finite fields. Finite Fields Appl. 50, 35–65 (2018)
Grémy, L.: Sieve Algorithms for the Discrete Logarithm in Medium Characteristic Finite Fields. PhD Thesis, University of Lorraine, Nancy, France (2017)
Hou, X.: Permutation polynomials over finite fields - a survey of recent advances. Finite Fields Appl. 32, 82–119 (2015)
Ingram, P., Silverman, J.H.: Primitive divisors in arithmetic dynamics. Math. Proc. Camb. Philos. Soc. 146, 289–302 (2009)
Işık, L., Topuzoğlu, A., Winterhof, A.: Complete mappings and Carlitz rank. Des. Codes Cryptogr. 85, 121–128 (2017)
Işık, L., Winterhof, A.: Carlitz rank and index of permutation polynomials. Finite Fields Appl. 49, 156–165 (2018)
Kalaycı, T.: On Factorization of Some Permutation Polynomials over Finite Fields. PhD Thesis. Sabancı University, İstanbul, Turkey (2019)
Kalaycı, T., Stichtenoth, H., Topuzoğlu, A.: Irreducible factors of a class of permutation polynomials. Finite Fields Appl. 63(101647), 12 (2020)
Kaleyski, N.S.: Changing APN functions at two points. Cryptogr. Commun. 11, 1165–1184 (2019)
Masuda, A., Panario, D.: Sequences of consecutive smooth polynomials over a finite field. Proc. Am. Math. Soc. 125, 1271–1277 (2007)
Meidl, W., Topuzoğlu, A.: On the Inversive Pseudorandom Number Generator. In: Devroye, L., Karasözen, B., Kohler, M., Korn, R (eds.) Recent Developments in Applied Probability and Statistics, pp 103–125. Physica, Heidelberg (2010)
Mullen, G.L., Panario, D.: Handbook of Finite Fields. Chapman and Hall, London (2013)
Muratović-Ribić, A., Pasalic, E.: A note on complete polynomials over finite fields and their applications in cryptography. Finite Fields Appl. 25, 306–315 (2014)
Nikova, S., Nikov, V., Rijmen, V.: Decomposition of permutations in a finite field. Crytogr. Commun. 11, 379–384 (2019)
Ostafe, A.: Iterations of Rational Functions: Some Algebraic and Arithmetic Aspects. In: Charpin, P., Pott, A., Winterhof, A (eds.) Finite Fields and Their Applications. Radon Series on Computational and Applied Mathematics 11, pp 197–231. De Gruyter, Berlin (2013)
Pausinger, F., Topuzoğlu, A.: Permutations of Finite Fields and Uniform Distribution Modulo 1. In: Niederreiter, H., Ostafe, A., Panario, D., Winterhof, A (eds.) Algebraic Curves and Finite Fields.Radon Series on Computational and Applied Mathematics 16, pp 145–157. De Gruyter, Berlin (2014)
Pausinger, F., Topuzoğlu, A.: On the discrepancy of two families of permuted van der Corput sequences. Unif. Distrib. Theory 13(1), 47–64 (2018)
Rice, B: Primitive prime divisors in polynomial arithmetic dynamics. Integers 7A26, 16 (2007)
Shparlinski, I.E.: Finite Fields: Theory and Computation. Kluwer, Dordrecht (1999)
Stewart, C.L.: Primitive Divisors of Lucas and Lehmer Sequences. In: Baker, A., Masser, D. W. (eds.) Transcendence Theory: Advances and Applications, pp 79–92. Academic Press, New York (1977)
Topuzoğlu, A.: Carlitz rank of permutations of finite fields: a survey. J. Symbolic Comput. 64, 53–66 (2014)
Vaudenay, S.: On the Lai-Massey Scheme. In: Lam, K. -Y., Okamoto, E., Xing, C (eds.) Advances in Cryptology - ASIACRYPT 1999. Lecture Notes in Computer Science 1716, pp 8–19. Springer, Heidelberg (1999)
Von zur Gathen, J., Panario, D.: Factoring polynomials over finite fields: a survey. J. Symbolic Comput. 31(1-2), 3–17 (2001)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This article belongs to the Topical Collection: Boolean Functions and Their Applications IV
Guest Editors: Lilya Budaghyan and Tor Helleseth
Rights and permissions
About this article
Cite this article
Kalaycı, T., Stichtenoth, H. & Topuzoğlu, A. Permutation polynomials and factorization. Cryptogr. Commun. 12, 913–934 (2020). https://doi.org/10.1007/s12095-020-00446-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12095-020-00446-y
Keywords
- Permutation polynomials over finite fields
- Factorization of polynomials
- Sequences of polynomials
- Irreducible factors
- Smooth polynomials
- Squarefree polynomials
- Primitive irreducible divisors
- Carlitz rank