[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Effectivity of Regular Spaces

  • Conference paper
  • First Online:
Computability and Complexity in Analysis (CCA 2000)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2064))

Included in the following conference series:

  • 418 Accesses

Abstract

General methods of investigating effectivity on regular Hausdor dorff (T 3) spaces is considered. It is shown that there exists a functor from a category of T 3 spaces into a category of domain representations. Using this functor one may look at the subcategory of effective domain representations to get an effectivity theory for T 3 spaces. However, this approach seems to be beset by some problems. Instead, a new approach to introducing effectivity to T 3 spaces is given. The construction uses effective retractions on effective Scott-Ershov domains. The benefit of the approach is that the numbering of the basis and the numbering of the elements are derived at once.

Supported by STINT, The Swedish Foundation for International Cooperation in Research and Higher Education.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. J. Blanck. Domain representability of metric spaces. Annals of Pure and Applied Logic, 83:225–247, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  2. J. Blanck. Domain representations of topological spaces. Theoretical Computer Science, 247:229–255, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  3. P. di Gianantonio. Real number computability and domain theory. Information and Computation, 127:11–25, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  4. A. Edalat. Domain theory and integration. Theoretical Computer Science, 151:163–193, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  5. A. Edalat. Dynamical systems, measures, and fractals via domain theory. Information and Computation, 120:32–48, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  6. A. Edalat. Power domains and iterated function systems. Information and Computation, 124:182–197, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  7. A. Edalat. Domains for computation in mathematics, physics and exact real arithmetic. Bulletin of Symbolic Logic, 3(4):401–452, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  8. A. Edalat and R. Heckmann. A computational model for metric spaces. Theoretical Computer Science, 193:53–73, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  9. Y. L. Ershov. Model c of partial continuous functionals. In R. O. Gandy and J. M. E. Hyland, editors, Logic Colloquium 76, volume 87 of Studies in Logic and Foundations in Mathematics, pages 455–467. North-Holland, 1977.

    Google Scholar 

  10. M. H. Escardó. Injective spaces via the filter monad. Topology Proceedings, 22(2):97–110, 1997.

    MathSciNet  Google Scholar 

  11. C. Kreitz and K. Weihrauch. Theory of representations. Theoretical Computer Science, 38:35–53, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  12. D. Normann. The continuous functionals of finite types over the reals. Preprint, Department of Mathematics, University of Oslo, 1998.

    Google Scholar 

  13. M. Schröder. Effective metrization of regular spaces. In K.-I. Ko et al., editors, Computability and Complexity in Analysis, volume 235 of Informatik-Berichte, pages 63–80. FernUniversität Hagen, August 1998. CCA Workshop, Brno, Czech Republic, August, 1998.

    Google Scholar 

  14. D. Spreen. On some decision problems in programming. Information and Computation, 122(1):120–139, 1995. (Corrigendum: Inform. and Comp. 148, 241-244, 1999).

    Article  MATH  MathSciNet  Google Scholar 

  15. D. Spreen. On effective topological spaces. The Journal of Symbolic Logic, 63(1):185–221, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  16. V. Stoltenberg-Hansen, I. Lindström, and E. R. Griffor. Mathematical Theory of Domains. Cambridge University Press, 1994.

    Google Scholar 

  17. V. Stoltenberg-Hansen and J. V. Tucker. Complete local rings as domains. Journal of Symbolic Logic, 53:603–624, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  18. V. Stoltenberg-Hansen and J. V. Tucker. Effective algebra. In S. Abramsky et al., editors, Handbook of Logic in Computer Science, volume IV, pages 357–526. Oxford University Press, 1995.

    Google Scholar 

  19. G. A. Waagbλ. Domains-with-totality semantics for Intuitionistic Type Theory. PhD thesis, University of Oslo, 1997.

    Google Scholar 

  20. K. Weihrauch. An Introduction to Computable Analysis. Springer, 2000.

    Google Scholar 

  21. K. Weihrauch and U. Schreiber. Embedding metric spaces into cpo’s. Theoretical Computer Science, 16:5–24, 1981.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Blanck, J. (2001). Effectivity of Regular Spaces. In: Blanck, J., Brattka, V., Hertling, P. (eds) Computability and Complexity in Analysis. CCA 2000. Lecture Notes in Computer Science, vol 2064. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45335-0_1

Download citation

  • DOI: https://doi.org/10.1007/3-540-45335-0_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42197-9

  • Online ISBN: 978-3-540-45335-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics