[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Quasimöbius invariance of Loewner spaces

  • Published:
Bulletin of the Malaysian Mathematical Sciences Society Aims and scope Submit manuscript

Abstract

In this paper, we show that Loewner spaces introduced by Heinonen and Koskela (Acta Math., 1998) are preserved under quasimöbius mappings between Ahlfors regular spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balogh, Z., Buckley, S.: Sphericalization and flattening. Conform. Geom. Dyn. 9, 76–101 (2005)

    Article  MathSciNet  Google Scholar 

  2. Bonk, M., Kleiner, B.: Quasisymmetric parametrizations of two-dimensional metric spheres. Invent. Math. 150, 127–183 (2002)

    Article  MathSciNet  Google Scholar 

  3. Bonk, M., Kleiner, B.: Rigidity for quasi-Möbius group actions. J. Differential Geom. 61, 81–106 (2002)

    Article  MathSciNet  Google Scholar 

  4. Brania, A., Yang, S.: Domains with controlled modulus and quasiconformal mappings. Nonlinear Stud. 9, 57–74 (2002)

    MathSciNet  Google Scholar 

  5. Buckley, S.M., Herron, D., Xie, X.: Metric space inversions, quasihyperbolic distance, and uniform spaces. Indiana Univ. Math. J. 57, 837–890 (2008)

    MathSciNet  MATH  Google Scholar 

  6. David, G., Semmes, S.: Fractured fractals and broken dreams: self-similar geometry through metric and measure. Oxford lecture series in mathematics and its applifications, 7. Clarendon Press, Oxford (1997)

  7. Heinonen, J.: Lectures on analysis on metric spaces. Springer-Verlag, Berlin-Heidelberg-New York (2001)

    Book  Google Scholar 

  8. Heinonen, J., Koskela, P.: Quasiconformal maps in metric spaces with controlled geometry. Acta Math. 181, 1–61 (1998)

    Article  MathSciNet  Google Scholar 

  9. Li, X., Shanmugalingam, N.: Preservation of bounded geometry under sphericalization and flattening. Indiana. Math. J. 64, 1303–1341 (2015)

    Article  MathSciNet  Google Scholar 

  10. Tyson, J.: Quasiconformality and quasisymmetry in metric measure spaces. Ann. Acad. Sci. Fenn. Math. 23, 525–548 (1998)

    MathSciNet  MATH  Google Scholar 

  11. Väisälä, J., Quasi-Möbius maps, J. Anal. Math. 44, 218–234 (1984/85)

  12. Wang, X., Zhou, Q.: Quasimöbius maps, weakly quasimöbius maps and uniform perfectness in quasi-metric spaces. Ann. Acad. Sci. Fenn. Ser. AI Math. 42, 257–284 (2017)

    Article  Google Scholar 

  13. Zhou, Q., Li, X., Li, Y.: Sphericalizations and applications in Gromov hyperbolic spaces. J. Math. Anal. Appl. 509, 125948 (2022)

    Article  MathSciNet  Google Scholar 

  14. Zhou, Q., Li, X., Li, Y.: Deformations on symbolic Cantor sets and ultrametric spaces. Bull. Malays. Math. Sci. Soc. 43(4), 3259–3270 (2020)

    Article  MathSciNet  Google Scholar 

  15. Zhou, Q. and Ponnusamy, S.: Gromov hyperbolic type metrics and quasimöbius invariance of uniform domains, Submitted

  16. Zhou, Q., Rasila, A.: Quasimöbius invariance of uniform domains. Stud. Math. 261(1), 1–24 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaxiang Li.

Additional information

Communicated by Saminathan Ponnusamy.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The first author was supported by Department of Education of Guangdong Province, China (No. 2021KTSCX116), by Guangdong Basic and Applied Basic Research Foundation (No. 2021A1515012289), and Research Fund of Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology (No. 2020B1212030010). The second author was supported by National Natural Science Foundation of Hunan Province (No. 2021JJ3016), by Scientific Research Fund of Hunan Provincial Education Department (Nos. 20B118, 18C0253), by NNSF of China (No. 11971124) and by NSF of Guangdong Province (No. 2021A1515010326).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, T., Li, Y. Quasimöbius invariance of Loewner spaces. Bull. Malays. Math. Sci. Soc. 45, 1903–1912 (2022). https://doi.org/10.1007/s40840-022-01296-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40840-022-01296-y

Keywords

Mathematics Subject Classification

Navigation