[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Tableau Calculi for the Logics of Finite k-Ary Trees

  • Conference paper
  • First Online:
Automated Reasoning with Analytic Tableaux and Related Methods (TABLEAUX 2002)

Abstract

We present tableau calculi for the logics D k (k≥2) semantically characterized by the classes of Kripke models built on finite k-ary trees. Our tableau calculi use the signs T and F, some tableau rules for Intuitionistic Logic and two rules formulated in a hypertableau fashion. We prove the Soundness and Completeness Theorems for our calculi. Finally, we use them to prove the main properties of the logics D k, in particular their constructivity and their decidability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. A. Avellone, M. Ferrari, and P. Miglioli. Duplication-free tableau calculi and related cut-free sequent calculi for the interpolable propositional intermediate logics. Logic Journal of the IGPL, 7(4):447–480, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  2. A. Avellone, P. Miglioli, U. Moscato, and M. Ornaghi. Generalized tableau systems for intermediate propositional logics. In D. Galmiche, editor, Proceedings of the 6th International Conference on Automated Reasoning with Analytic Tableaux and Related Methods: Tableaux’ 97, volume 1227 of LNAI, pages 43–61. Springer-Verlag, 1997.

    Google Scholar 

  3. A. Avron. Hypersequents, logical consequence and intermediate logics for concurrency. Annals for Mathematics and Artificial Intelligence, 4:225–248, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  4. M. Baaz and C. G. Fermüller. Analytic calculi for projective logics. Lecture Notes in Computer Science, 1617:36–50, 1999.

    Google Scholar 

  5. A. Chagrov and M. Zakharyaschev. Modal Logic. Oxford University Press, 1997.

    Google Scholar 

  6. A. Ciabattoni and M. Ferrari. Hypertableau and path-hypertableau calculi for some families of intermediate logics. In R. Dyckhoff, editor, TABLEAUX 2000, Automated Reasoning with Analytic Tableaux and Related Methods, volume 1947 of LNAI, pages 160–174. Springer-Verlag, 2000.

    Google Scholar 

  7. A. Ciabattoni and M. Ferrari. Hypersequent calculi for some intermediate logics with bounded Kripke models. Journal of Logic and Computation, 11(2):283–294, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  8. R. Dyckhoff. A deterministic terminating sequent calculus for Gödel-Dummett logic. Logic Journal of the IGPL, 7(3):319–326, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  9. M. Ferrari and P. Miglioli. Counting the maximal intermediate constructive logics. Journal of Symbolic Logic, 58(4):1365–1401, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  10. G. Fiorino. An O(n log n)-space decision procedure for the propositional Dummett Logic. Journal of Automated Reasoning, 27(3):297–311, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  11. G. Fiorino. Space-efficient Decision Procedures for Three Interpolable Propositional Intermediate Logics. Journal of Logic and Computation, To appear.

    Google Scholar 

  12. M.C. Fitting. Intuitionistic Logic, Model Theory and Forcing. North-Holland, 1969.

    Google Scholar 

  13. D.M. Gabbay and D.H.J. De Jongh. A sequence of decidable finitely axiomatizable intermediate logics with the disjunction property. Journal of Symbolic Logic, 39:67–78, 1974.

    Article  MATH  MathSciNet  Google Scholar 

  14. P. Hájek. Metamathematics of fuzzy logic. Kluwer, 1998.

    Google Scholar 

  15. D. Pearce. A new logical characterization of stable models and answer sets. In J. Dix, L.M. Pereira, and T. Przymusinski, editors, Non-Monotonic Extensions of Logic Programming, volume 1216 of LNAI, pages 57–70. Springer-Verlag, 1997.

    Google Scholar 

  16. D. Pearce. Stable inference as intuitionistic validity. Journal of Logic Programming, 38(1):79–91, 1999.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ferrari, M., Fiorentini, C., Fiorino, G. (2002). Tableau Calculi for the Logics of Finite k-Ary Trees. In: Egly, U., Fermüller, C.G. (eds) Automated Reasoning with Analytic Tableaux and Related Methods. TABLEAUX 2002. Lecture Notes in Computer Science(), vol 2381. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45616-3_9

Download citation

  • DOI: https://doi.org/10.1007/3-540-45616-3_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43929-5

  • Online ISBN: 978-3-540-45616-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics