Abstract
Diffusion Tensor MRI (DT-MRI) measurements are a discrete noisy sample of an underlying macroscopic effective diffusion tensor field, D(x), of water. This field is presumed to be piecewise continuous/smooth at a gross anatomical length scale. Here we describe a mathematical framework for obtaining an estimate of this tensor field from the measured DT-MRI data using a spline-based continuous approximation. This methodology facilitates calculation of new structural quantities and provides a framework for applying differential geometric methods to DT-MRI data. A B-spline approximation has already been used to improve robustness of DT-MRI fiber tractography. Here we propose a piecewise continuous approximation based on Non-Uniform Rational B-Splines (NURBS), which addresses some of the shortcomings of the previous implementation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
P.J. Basser, J. Mattiello, and D. Le Bihan. MR diffusion tensor spectroscopy and imaging. Biophysical Journal 66(1), 259–67 (1994).
P.J. Basser. Inferring microstructural features and the physiological state of tissues from diffusion-weighted images. NMR in Biomedicine, 8(7–8), 333–44 (1995).
P.J. Basser, and C. Pierpaoli. Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. Journal of Magnetic Resonance B 111(3), 209–19 (1996).
P.J. Basser. New histological and physiological stains derived from diffusiontensor MR images. Annals New York Acad Sci 820, 123–38 (1997).
S. Pajevic, A. Aldroubi and P.J. Basser. A continuous tensor field approximation of discrete DT-MRI data for extracting microstructural and architectural features of tissue. Journal of Magnetic Resonance, 154, 85–100 (2002).
T. E. Conturo, N. F. Lori, T. S. Cull, E. Akbudak, A. Z. Snyder, J. S. Shimony, R. C. McKinstry, H. Burton, M. E. Raichle, Tracking neuronal fiber pathways in the living human brain, Proceedings National Acad Sci USA 96, 10422–7 (1999).
S. Mori, B. J. Crain, V. P. Chacko, P. C. M. van Zijl, Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging, Annals of Neurology, 45, 265–269 (1999).
S. Mori, W. E. Kaufmann, G. D. Pearlson, B. J. Crain, B. Stieltjes, M. Solaiyappan, P. C. van Zijl, In vivo visualization of human neural pathways by magnetic resonance imaging, Annals of Neurology 47, 412–4 (2000).
P.J. Basser, S. Pajevic, C. Pierpaoli, A. Aldroubi, and J. Duda. In Vivo Fiber-Tractography in Human Brain Using Diffusion Tensor MRI (DT-MRI) Data, Magnetic Resonance in Medicine, 44:625–632 (2000).
A. Aldroubi and P.J. Basser, Reconstruction of vector and tensor fields from sampled discrete data. in ‘Contemporary Mathematics’. (L.W. Baggett, D.R. Larson, editors) pp. 1–15, American Math. Society, Providence, RI (1999).
C. Poupon, C. A. Clark, V. Frouin, J. Régis, I. Bloch, D. L. Bihan, J.-F. Mangin, Regularization of diffusion-based direction maps for the tracking of brain white matter fascicles, Neuroimage 12(2), 184–195 (2000).
G. Parker, J. A. Schnabel, M. R. Symms, D. J. Werring, G. J. Barker, Nonlinear smoothing for reduction of systematic and random errors in diffusion tensor imaging, Journal of Magnetic Resonance Imaging, 11, 702–710 (2000).
J.-F. Mangin, C. Poupon, C. Clark, D. Le Bihan and I. Bloch, Eddy-Current Distortion Correction and Robust Tensor Estimation for MR-Diffusion Imaging, Lecture Notes in Computer Science, 2208, 186 (2001).
C.F. Westin, S.E. Maier, H. Mamata, A. Nabavi, F.A., Jolesz, R. Kikinis, Processing and visualization for diffusion tensor MRI. Medical Image Analysis, 6, 93–108 (2002).
A. Aldroubi, M. Eden, and M. Unser. Discrete spline filters for multiresolutions and wavelets of L2, SIAM Journal on Mathematical Analysis, 25, 1412–1432 (1994).
A. Aldroubi. Oblique projections in atomic spaces. Proceedings of the American Math. Society 124, 2051–2060 (1996).
M. Unser, A. Aldroubi, and M. Eden. B-Spline Signal Processing: Part II-Efficient Design and Implementation. IEEE Transactions on Signal Processing 41(2), 834–848 (1993).
C. DeBoor, A Practical Guide to Splines, Springer-Verlag Telos, 1994
M. Unser, A. Aldroubi, and M. Eden. B-Spline Signal Processing: Part I-Theory. IEEE Transactions on Signal Processing 41(2), 821–833 (1993).
M. Unser, A. Aldroubi, and M. Eden. Enlargment or reduction of digital images with minimum loss of information, IEEE Transactions on Image Processing 4, 247–258 (1995).
L. Piegl, W. Tiller, The NURBS Book, Springer-Verlag, 1997
D.S. Tuch and T.G. Reese and M.R. Wiegell and N.G. Makris and J.W. Belliveau and V.J. Wedeen. High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity, Magnetic Resonance in Medicine, 48, 577–582 (2002).
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Pajevic, S., Aldroubi, A., Basser, P.J. (2006). Continuous Tensor Field Approximation of Diffusion Tensor MRI data. In: Weickert, J., Hagen, H. (eds) Visualization and Processing of Tensor Fields. Mathematics and Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-31272-2_18
Download citation
DOI: https://doi.org/10.1007/3-540-31272-2_18
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-25032-6
Online ISBN: 978-3-540-31272-7
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)