Abstract
A novel particle filter, enhancing particle swarm optimization based particle filter (EPSOPF), is proposed for visual tracking. Particle filter (PF) is sequential Monte Carlo simulation based on particle set representations of probability densities, which can be applied to visual tracking. However, PF has the impoverishment phenomenon which limits its application. To improve the performance of PF, particle swarm optimization with mutation operator is introduced to form new filtering, in which mutation operator maintain multiple modes of particle set and optimization-seeking procedure drives particles to their neighboring maximum of the posterior. When applied to visual tracking, the proposed approach can realize more efficient function than PF.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Wang, Q., Xie, L., Liu, J., Xiang, Z. (2006). Enhancing Particle Swarm Optimization Based Particle Filter Tracker. In: Huang, DS., Li, K., Irwin, G.W. (eds) Computational Intelligence. ICIC 2006. Lecture Notes in Computer Science(), vol 4114. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-37275-2_151
Download citation
DOI: https://doi.org/10.1007/978-3-540-37275-2_151
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-37274-5
Online ISBN: 978-3-540-37275-2
eBook Packages: Computer ScienceComputer Science (R0)