[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Enhancing Particle Swarm Optimization Based Particle Filter Tracker

  • Conference paper
  • First Online:
Computational Intelligence (ICIC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4114))

Included in the following conference series:

Abstract

A novel particle filter, enhancing particle swarm optimization based particle filter (EPSOPF), is proposed for visual tracking. Particle filter (PF) is sequential Monte Carlo simulation based on particle set representations of probability densities, which can be applied to visual tracking. However, PF has the impoverishment phenomenon which limits its application. To improve the performance of PF, particle swarm optimization with mutation operator is introduced to form new filtering, in which mutation operator maintain multiple modes of particle set and optimization-seeking procedure drives particles to their neighboring maximum of the posterior. When applied to visual tracking, the proposed approach can realize more efficient function than PF.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, Q., Xie, L., Liu, J., Xiang, Z. (2006). Enhancing Particle Swarm Optimization Based Particle Filter Tracker. In: Huang, DS., Li, K., Irwin, G.W. (eds) Computational Intelligence. ICIC 2006. Lecture Notes in Computer Science(), vol 4114. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-37275-2_151

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-37275-2_151

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-37274-5

  • Online ISBN: 978-3-540-37275-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics