[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Visual Tracking via a Novel Adaptive Anti-occlusion Mean Shift Embedded Particle Filter

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Visual tracking is a significant research field in computer vision. Despite the development of numerous algorithms, the challenge of achieving effective visual tracking in dynamic environments persists. Among various methods, the particle filter (PF) excels in visual tracking due to its adaptability in nonlinear and non-Gaussian environments. In this article, a novel adaptive anti-occlusion mean shift embedded particle filter (AAO-MSPF) is presented as a distinctive approach to address complex tracking scenarios. The integration of the mean shift algorithm can significantly elevate particle prediction accuracy within the framework. The incorporation of the modified particle swarm optimization algorithm optimizes particle distribution and significantly improves the tracking performance. Furthermore, the proposed anti-occlusion module utilizes block-based detection to identify occlusion, enabling adjustments to the motion model. This technique contributes to improved tracking performance, distinguishing our method from others. After a comprehensive comparative analysis, the experimental results indicate that the proposed method AAO-MSPF demonstrates robustness and stability under challenging dynamic conditions and surpasses other trackers in tracking performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Algorithm 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availibility

The OTB-100 dataset used in this research is publicly available. It can be downloaded at https://github.com/yuyma/OTB100_dataset_download/releases.

References

  1. M.Y. Abbass, K.C. Kwon, N. Kim, S.A. Abdelwahab, F.E.A. El-Samie, A.A.M. Khalaf, A survey on online learning for visual tracking. Vis. Comput. 37(5), 993–1014 (2021)

    Article  Google Scholar 

  2. M.S. Arulampalam, S. Maskell, N. Gordon, T. Clapp, A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans. Signal Process. 50(2), 174–188 (2002)

    Article  Google Scholar 

  3. L. Bertinetto, J. Valmadre, S. Golodetz, O. Miksik, P.H.S. Torr, Staple: complementary learners for real-time tracking, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1401–1409 (2016)

  4. P.G. Bhat, B.N. Subudhi, T. Veerakumar, G.D. Caterina, J.J. Soraghan, Target tracking using a mean-shift occlusion aware particle filter. IEEE Sens. J. 21(8), 10112–10121 (2021)

    Article  Google Scholar 

  5. M. Cai-xia, Z. Xin-yan, Object tracking method based on particle filter of adaptive patches combined with multi-features fusion. Multimed. Tools Appl. 78(7), 8799–8811 (2019)

    Article  Google Scholar 

  6. X. Cheng, N. Li, S. Zhang, Z. Wu, Robust visual tracking with SIFT features and fragments based on particle swarm optimization. Circuits Syst. Signal Process. 33(5), 1507–1526 (2014)

    Article  Google Scholar 

  7. D. Comaniciu, V. Ramesh, P. Meer, Kernel-based object tracking. IEEE Trans. Pattern Anal. Mach. Intell. 25(5), 564–577 (2003)

    Article  Google Scholar 

  8. M. Danelljan, G. Häger, F. Khan, M. Felsberg, Accurate scale estimation for robust visual tracking, in Proceedings of the British Machine Vision Conference, pp. 1–11 (2014)

  9. S.A. Daneshyar, N.M. Charkari, Biogeography based optimization method for robust visual object tracking. Appl. Soft Comput. 122, 108802 (2022)

    Article  Google Scholar 

  10. J.F. Henriques, R. Caseiro, P. Martins, J. Batista, High-speed tracking with kernelized correlation filters. IEEE Trans. Pattern Anal. Mach. Intell. 37(3), 583–596 (2015)

    Article  Google Scholar 

  11. R. Huan, S. Bao, C. Wang, Y. Pan, Anti-occlusion particle filter object-tracking method based on feature fusion. IET Image Process. 12(9), 1529–1540 (2018)

    Article  Google Scholar 

  12. D. Joshi, S. Dash, S. Reddy, R. Manigilla, G. Trivedi, Multi-objective hybrid particle swarm optimization and its application to analog and RF circuit optimization. Circuits Syst. Signal Process. 42(8), 4443–4469 (2023)

    Article  Google Scholar 

  13. T. Kailath, The divergence and Bhattacharyya distance measures in signal selection. IEEE Trans. Commun. Technol. 15(1), 52–60 (1967)

    Article  Google Scholar 

  14. A. Kumar, G.S. Walia, K. Sharma, Real-time visual tracking via multi-cue based adaptive particle filter framework. Multimed. Tools Appl. 79(29), 20639–20663 (2020)

    Article  Google Scholar 

  15. E. Maggio, F. Smerladi, A. Cavallaro, Adaptive multifeature tracking in a particle filtering framework. IEEE Trans. Circuits Syst. Video Technol. 17(10), 1348–1359 (2007)

    Article  Google Scholar 

  16. S.M. Marvasti-Zadeh, L. Cheng, H. Ghanei-Yakhdan, S. Kasaei, Deep learning for visual tracking: a comprehensive survey. IEEE Trans. Intell. Transp. Syst. 23(5), 3943–3968 (2022)

    Article  Google Scholar 

  17. K. Nummiaro, E. Koller-Meier, L. Van Gool, An adaptive color-based particle filter. Image Vis. Comput. 21(1), 99–110 (2003)

    Article  Google Scholar 

  18. T. Ojala, M. Pietikainen, T. Maenpaa, Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)

    Article  Google Scholar 

  19. P. Ong, T.K. Chong, K.M. Ong, E.S. Low, Tracking of moving athlete from video sequences using flower pollination algorithm. Vis. Comput. 38(3), 939–962 (2022)

    Article  Google Scholar 

  20. J. Panda, P.K. Nanda, Particle filter-based video object tracking using feature fusion in template partitions. Vis. Comput. 39(7), 2757–2779 (2023)

    Article  Google Scholar 

  21. H. Seunghoon, Y. Tackgeun, K. Suha, H. Bohyung, Online tracking by learning discriminative saliency map with convolutional neural network, in Proceedings of the International Conference on Machine Learning, pp. 597–606 (2015)

  22. D. Wang, D. Tan, L. Liu, Particle swarm optimization algorithm: an overview. Soft. Comput. 22(2), 387–408 (2018)

    Article  Google Scholar 

  23. F. Wang, Y. Wang, J. He, F. Sun, X. Li, J. Zhang, Visual object tracking via iterative ant particle filtering. IET Image Process. 14(8), 1636–1644 (2020)

    Article  Google Scholar 

  24. J. Wang, L. Zhao, X. Su, Marginalized particle flow filter. Circuits Syst. Signal Process. 38(7), 3152–3169 (2019)

    Article  Google Scholar 

  25. Y. Wu, J. Lim, M.H. Yang, Object tracking benchmark. IEEE Trans. Pattern Anal. Mach. Intell. 37(9), 1834–1848 (2015)

    Article  Google Scholar 

  26. Y. Xiao, Y. Wu, F. Yang, A scale adaptive generative target tracking method based on modified particle filter. Multimed. Tools Appl. 82(20), 31329–31349 (2023)

    Article  Google Scholar 

  27. C. Yizong, Mean shift, mode seeking, and clustering. IEEE Trans. Pattern Anal. Mach. Intell. 17(8), 790–799 (1995)

    Article  Google Scholar 

  28. H. Zhang, Z. Gao, Y. Pan, G. Yang, W.J. Zhang, J. Wang, A synergy of the adaptive whale optimization algorithm and differential evolution for abrupt motion tracking. Appl. Soft Comput. 144, 110554 (2023)

    Article  Google Scholar 

  29. J. Zhang, S. Ma, S. Sclaroff, MEEM: robust tracking via multiple experts using entropy minimization, in Proceedings of the European Conference on Computer Vision, pp. 188–203 (2014)

  30. J. Zhang, J. Sun, J. Wang, X. Yue, Visual object tracking based on residual network and cascaded correlation filters. J. Ambient. Intell. Humaniz. Comput. 12(8), 8427–8440 (2021)

    Article  Google Scholar 

  31. S. Zhang, L. Xing, L. Zhou, Z. Sun, Object tracking by incremental structural learning of deformable parts. Circuits Syst. Signal Process. 37(1), 255–276 (2018)

    Article  MathSciNet  Google Scholar 

  32. X. Zhang, R. Jiang, C. Fan, T. Tong, T. Wang, P. Huang, Advances in deep learning methods for visual tracking: literature review and fundamentals. Int. J. Autom. Comput. 18(3), 311–333 (2021)

    Article  Google Scholar 

  33. Y. Zhang, T. Wang, K. Liu, B. Zhang, L. Chen, Recent advances of single-object tracking methods: a brief survey. Neurocomputing 455, 1–11 (2021)

    Article  Google Scholar 

  34. W. Zhou, L. Liu, J. Hou, Firefly algorithm-based particle filter for nonlinear systems. Circuits Syst. Signal Process. 38(4), 1583–1595 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grant 62003083, in part by the Fundamental Research Funds for the Central Universities, and in part by the DHU Distinguished Young Professor Program under Grant 23D210401.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongwei Chen.

Ethics declarations

Conflict of interest

The authors declare no Conflict of interest relevant to the content of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, S., Chen, H. Visual Tracking via a Novel Adaptive Anti-occlusion Mean Shift Embedded Particle Filter. Circuits Syst Signal Process (2024). https://doi.org/10.1007/s00034-024-02882-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00034-024-02882-0

Keywords

Navigation