[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Detection of Protein Assemblies in Crystals

  • Conference paper
Computational Life Sciences (CompLife 2005)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 3695))

Included in the following conference series:

Abstract

The paper describes a new approach to the prediction of probable biological units from protein structures obtained by means of protein crystallography. The method first employs graph-theoretical technique in order to find all possible assemblies in crystal. In second step, found assemblies are analysed for chemical stability and only stable oligomers are left as a potential solution. We also discuss theoretical models for the assessment of protein affinity and entropy loss on complex formation, used in stability analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., Bourne, P.E.: The Protein Data Bank. Nucleic Acids Res. 28, 235–242 (2000)

    Article  Google Scholar 

  2. Henrick, K., Thornton, J.: PQS: a protein quaternary structure file server. Trends in Biochem.l Sci. 23, 358–361 (1998)

    Article  Google Scholar 

  3. Ponstingl, H., Kabir, T., Thornton, J.: Automatic inference of protein quaternary structure from crystals. J. Appl. Cryst. 36, 1116–1122 (2003)

    Article  Google Scholar 

  4. Ponstingl, H., Henrick, K., Thornton, J.: Discriminating between homodimeric and monomeric proteins in the crystalline state. Proteins 41, 47–57 (2000)

    Article  Google Scholar 

  5. Krissinel, E., Henrick, K.: Common subgraph isomorphism detection by back-tracking search. Softw. Pract. Exper. 34, 591–607 (2004)

    Article  Google Scholar 

  6. Baker, E.N., Hubbard, R.E.: Hydrogen bonding in globular proteins. Prog. Biophys. Molec. Biol. 44, 97–179 (1984)

    Article  Google Scholar 

  7. Janin, J., Miller, S., Chothia, C.: Surface, subunit interfaces and interior of oligomeric proteins. J. Mol. Biol. 204, 155–164 (1988)

    Article  Google Scholar 

  8. Argos, P.: An investigation of protein subunit and domain interfaces. Protein Eng. 2, 101–113 (1988)

    Article  Google Scholar 

  9. Miller, S.: The structure of interfaces between subunits of imeric and tetrameric proteins. Protein Eng. 3, 77–83 (1989)

    Article  Google Scholar 

  10. Janin, J., Chothia, C.: The structure of protein-protein recognition sites. J. Biol. Chem. 265, 16027–16030 (1990)

    Google Scholar 

  11. Horton, N., Lewis, M.: Calculation of the free energy of association for protein complexes. Protein Sci. 1, 169–181 (1992)

    Article  Google Scholar 

  12. Janin, J., Rodier, F.: Protein-protein interaction at crystal contacts. Proteins: Struc. Func. Genet. 23, 580–587 (1995)

    Article  Google Scholar 

  13. Jones, S., Thornton, J.M.: Protein-Protein interactions: a review of protein dimer structures. Prog. Biophys. Molec. Biol. 63, 31–65 (1995)

    Article  Google Scholar 

  14. Jones, S., Thornton, J.M.: Principles of protein-protein interactions. Proc. Natl. Acad. Sci. USA 93, 13–20 (1996)

    Article  Google Scholar 

  15. Xu, D., Tsai, C.-J., Nussinov, R.: Hydrogen bonds and salt bridges across protein-protein interfaces. Protein Engng. 10, 999–1012 (1997)

    Article  Google Scholar 

  16. Eisenberg, D., McLachlan, A.D.: Solvation energy in protein folding and binding. Nature 319, 199–203 (1986)

    Article  Google Scholar 

  17. McDonald, I., Thornton, J.: Satisfying hydrogen bonding potential in proteins. J. Mol. Biol. 238, 777–793 (1994)

    Article  Google Scholar 

  18. Pace, C., Shirley, B., McNutt, M., Gajiwala, K.: Forces contributing to the conformational stability of proteins. FASEB J. 10, 75–83 (1996)

    Google Scholar 

  19. Fersht, A.: The hydrogen bond in molecular recognition. Trends Biochem. Sci. 12, 3214–3219 (1987)

    Article  Google Scholar 

  20. Horovitz, A., Serrano, L., Avron, B., Bycroft, M., Fersht, A.: Strength and co-operativity of contributions of surface salt bridges to protein stability. J. Mol. Biol. 216, 1031–1044 (1990)

    Article  Google Scholar 

  21. Akke, M., Forsen, S.: Protein stability and electrostatic interactions between solvent exposed charged side chains. Proteins: Struct. Funct. Genet. 8, 23–29 (1990)

    Article  Google Scholar 

  22. Page, M.I., Jencks, W.P.: Entropic Contributions to Rate Accelerations in Enzymic and Intramolecular Reactions and the Chelate Effect. Proc. Natl. Acad. Sci. USA 68, 1678–1683 (1971)

    Article  Google Scholar 

  23. McQuarrie, D.A.: Statistical Mechanics. Harper & Row, New York (1976)

    Google Scholar 

  24. Murray, C.W., Verdonk, M.L.: The consequences of translational and rotational entropy lost by small molecules on binding to proteins. J. Comput.-Aided Mol. Design 16, 741–753 (2002)

    Article  Google Scholar 

  25. Finkelstein, A.V., Janin, J.: The price of lost freedom: entropy of bimolecular complex formation. Protein Eng. 3, 1–3 (1989)

    Article  Google Scholar 

  26. Mammen, J., Shakhnovich, E.I., Deutch, J.M., Whitesides, G.M.: Estimating the Entropic Cost of Self-Assembly of Multiparticle Hydrogen-Bonded Aggregates Based on the Cyanuric AcidMelamine Lattice. J. Org. Chem. 63, 3821–3830 (1998)

    Article  Google Scholar 

  27. Collaborative Computational Project, Number 4.: The CCP4 Suite: Programs for Protein Crystallography. Acta Cryst. D 50, 760–763 (1994)

    Google Scholar 

  28. Sayle, R.A., Milner-White, E.J.: RasMol: Biomolecular graphics for all. Trends in Biochemical Sci. 20, 374–376 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Krissinel, E., Henrick, K. (2005). Detection of Protein Assemblies in Crystals. In: R. Berthold, M., Glen, R.C., Diederichs, K., Kohlbacher, O., Fischer, I. (eds) Computational Life Sciences. CompLife 2005. Lecture Notes in Computer Science(), vol 3695. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11560500_15

Download citation

  • DOI: https://doi.org/10.1007/11560500_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29104-6

  • Online ISBN: 978-3-540-31726-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics