[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Computational Modelling of Protein Complex Structure and Assembly

  • Protocol
  • First Online:
Protein Complex Assembly

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1764))

Abstract

Sequence and structure space are nowadays sufficiently large that we can use computational methods to model the structure of proteins based on sequence similarity alone. Not only useful as a standalone tool, homology modelling has also had a transformative effect on the ease with which we can solve crystal structures and electron density maps. Another technique—molecular dynamics—aims to model protein structures from first principles and, thanks to increases in computational power, is slowly becoming a viable tool for studying protein complexes. Finally, the prediction of protein assembly pathways from three-dimensional structures of complexes is also now becoming possible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
GBP 34.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 109.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Anfinsen CB (1973) Principles that govern the folding of protein chains. Science 181:223–230. https://doi.org/10.1126/science.181.4096.223

    Article  PubMed  CAS  Google Scholar 

  2. Moult J, Pedersen JT, Judson R, Fidelis K (1995) A large-scale experiment to assess protein structure prediction methods. Proteins Struct Funct Genet 23:ii–iv. https://doi.org/10.1002/prot.340230303

    Article  PubMed  CAS  Google Scholar 

  3. Janin J, Henrick K, Moult J et al (2003) CAPRI: a Critical Assessment of PRedicted Interactions. Proteins Struct Funct Genet 52:2–9. https://doi.org/10.1002/prot.10381

    Article  PubMed  CAS  Google Scholar 

  4. Haas J, Roth S, Arnold K et al (2013) The protein model portal–a comprehensive resource for protein structure and model information. Database 2013:bat031–bat031. https://doi.org/10.1093/database/bat031

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Moult J, Fidelis K, Kryshtafovych A et al (2016) Critical assessment of methods of protein structure prediction: progress and new directions in round XI. Proteins 84:4–14. https://doi.org/10.1002/prot.25064

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Jiang Z-Y, Chu H-X, Xi M-Y et al (2013) Insight into the intermolecular recognition mechanism between Keap1 and IKKβ combining homology modelling, protein-protein docking, molecular dynamics simulations and virtual alanine mutation. PLoS One 8:e75076. https://doi.org/10.1371/journal.pone.0075076

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Rajapaksha H, Petrovsky N (2014) In silico structural homology modelling and docking for assessment of pandemic potential of a novel H7N9 influenza virus and its ability to be neutralized by existing anti-hemagglutinin antibodies. PLoS One 9:e102618. https://doi.org/10.1371/journal.pone.0102618

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Agostino M, Mancera RL, Ramsland PA, Fernández-Recio J (2016) Optimization of protein-protein docking for predicting Fc-protein interactions. J Mol Recognit 29:555–568. https://doi.org/10.1002/jmr.2555

    Article  PubMed  CAS  Google Scholar 

  9. Lensink MF, Velankar S, Kryshtafovych A et al (2016) Prediction of homoprotein and heteroprotein complexes by protein docking and template-based modeling: a CASP-CAPRI experiment. Proteins 84:323–348. https://doi.org/10.1002/prot.25007

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Chothia C, Lesk AM (1986) The relation between the divergence of sequence and structure in proteins. EMBO J 5(4):823–826

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Chen H, Skolnick J (2008) M-TASSER: an algorithm for protein quaternary structure prediction. Biophys J 94:918–928. https://doi.org/10.1529/biophysj.107.114280

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Tuncbag N, Gursoy A, Nussinov R, Keskin O (2011) Predicting protein-protein interactions on a proteome scale by matching evolutionary and structural similarities at interfaces using PRISM. Nat Protoc 6:1341–1354. https://doi.org/10.1038/nprot.2011.367

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Guerler A, Govindarajoo B, Zhang Y (2013) Mapping monomeric threading to protein-protein structure prediction. J Chem Inf Model 53:717–725. https://doi.org/10.1021/ci300579r

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Bowie J, Luthy R, Eisenberg D (1991) A method to identify protein sequences that fold into a known three-dimensional structure. Science 253:164–170. https://doi.org/10.1126/science.1853201

    Article  PubMed  CAS  Google Scholar 

  15. Lu L, Lu H, Skolnick J (2002) Multiprospector: an algorithm for the prediction of protein-protein interactions by multimeric threading. Proteins Struct Funct Genet 49:350–364. https://doi.org/10.1002/prot.10222

    Article  PubMed  CAS  Google Scholar 

  16. Szilagyi A, Zhang Y (2014) Template-based structure modeling of protein-protein interactions. Curr Opin Struct Biol 24:10–23. https://doi.org/10.1016/j.sbi.2013.11.005

    Article  PubMed  CAS  Google Scholar 

  17. Huang S-Y (2014) Search strategies and evaluation in protein–protein docking: principles, advances and challenges. Drug Discov Today 19:1081–1096. https://doi.org/10.1016/j.drudis.2014.02.005

    Article  PubMed  CAS  Google Scholar 

  18. Katchalski-Katzir E, Shariv I, Eisenstein M et al (1992) Molecular surface recognition: determination of geometric fit between proteins and their ligands by correlation techniques. Proc Natl Acad Sci U S A 89:2195–2199. https://doi.org/10.1073/pnas.89.6.2195

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Hart TN, Read RJ (1992) A multiple-start Monte Carlo docking method. Proteins Struct Funct Genet 13:206–222. https://doi.org/10.1002/prot.340130304

    Article  PubMed  CAS  Google Scholar 

  20. Zacharias M (2005) ATTRACT: protein-protein docking in CAPRI using a reduced protein model. Proteins 60:252–256. https://doi.org/10.1002/prot.20566

    Article  PubMed  CAS  Google Scholar 

  21. Lyskov S, Gray JJ (2008) The RosettaDock server for local protein-protein docking. Nucleic Acids Res 36:W233–W238. https://doi.org/10.1093/nar/gkn216

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Zhang Z, Schindler CEM, Lange OF, Zacharias M (2015) Application of enhanced sampling Monte Carlo methods for high-resolution protein-protein docking in Rosetta. PLoS One 10:e0125941. https://doi.org/10.1371/journal.pone.0125941

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Dominguez C, Boelens R, Bonvin AMJJ (2003) HADDOCK: a protein-protein docking approach based on biochemical or biophysical information. J Am Chem Soc 125:1731–1737. https://doi.org/10.1021/ja026939x

    Article  CAS  PubMed  Google Scholar 

  24. van Zundert GCP, Rodrigues JPGLM, Trellet M et al (2016) The HADDOCK2.2 Web server: user-friendly integrative modeling of biomolecular complexes. J Mol Biol 428:720–725. https://doi.org/10.1016/j.jmb.2015.09.014

    Article  PubMed  CAS  Google Scholar 

  25. Kynast P, Derreumaux P, Strodel B (2016) Evaluation of the coarse-grained OPEP force field for protein-protein docking. BMC Biophys 9:4. https://doi.org/10.1186/s13628-016-0029-y

    Article  PubMed  PubMed Central  Google Scholar 

  26. Böhm H-J (1998) Prediction of binding constants of protein ligands: a fast method for the prioritization of hits obtained from de novo design or 3D database search programs. J Comput Aided Mol Des 12:309–309. https://doi.org/10.1023/A:1007999920146

    Article  PubMed  Google Scholar 

  27. Sasse A, de Vries SJ, Schindler CEM et al (2017) Rapid design of knowledge-based scoring potentials for enrichment of near-native geometries in protein-protein docking. PLoS One 12:e0170625. https://doi.org/10.1371/journal.pone.0170625

    Article  PubMed  PubMed Central  Google Scholar 

  28. Drozdetskiy A, Cole C, Procter J, Barton GJ (2015) JPred4: a protein secondary structure prediction server. Nucleic Acids Res 43:W389–W394. https://doi.org/10.1093/nar/gkv332

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Finn RD, Coggill P, Eberhardt RY et al (2016) The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res 44:D279–D285. https://doi.org/10.1093/nar/gkv1344

    Article  PubMed  CAS  Google Scholar 

  30. The UniProt Consortium (2017) UniProt: the universal protein knowledgebase. Nucleic Acids Res 45:D158–D169. https://doi.org/10.1093/nar/gkw1099

    Article  CAS  Google Scholar 

  31. Altschuh D, Lesk AM, Bloomer AC, Klug A (1987) Correlation of co-ordinated amino acid substitutions with function in viruses related to tobacco mosaic virus. J Mol Biol 193:693–707. https://doi.org/10.1016/0022-2836(87)90352-4

    Article  PubMed  CAS  Google Scholar 

  32. Weigt M, White RA, Szurmant H et al (2009) Identification of direct residue contacts in protein-protein interaction by message passing. Proc Natl Acad Sci U S A 106:67–72. https://doi.org/10.1073/pnas.0805923106

    Article  PubMed  Google Scholar 

  33. Lunt B, Szurmant H, Procaccini A et al (2010) Inference of direct residue contacts in two-component signaling. Methods Enzymol 471:17–41. https://doi.org/10.1016/S0076-6879(10)71002-8

    Article  PubMed  CAS  Google Scholar 

  34. Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27:379–423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x

    Article  Google Scholar 

  35. Marks DS, Colwell LJ, Sheridan R et al (2011) Protein 3D structure computed from evolutionary sequence variation. PLoS One 6:e28766. https://doi.org/10.1371/journal.pone.0028766

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Marks DS, Hopf TA, Sander C (2012) Protein structure prediction from sequence variation. Nat Biotechnol 30:1072–1080. https://doi.org/10.1038/nbt.2419

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Hopf TA, Schärfe CPI, Rodrigues JPGLM et al (2014) Sequence co-evolution gives 3D contacts and structures of protein complexes. Elife. https://doi.org/10.7554/eLife.03430

  38. Wagner A (2001) The yeast protein interaction network evolves rapidly and contains few redundant duplicate genes. Mol Biol Evol 18:1283–1292. https://doi.org/10.1093/oxfordjournals.molbev.a003913

    Article  PubMed  CAS  Google Scholar 

  39. Wagner A (2003) How the global structure of protein interaction networks evolves. Proc R Soc B Biol Sci 270:457–466. https://doi.org/10.1098/rspb.2002.2269

    Article  CAS  Google Scholar 

  40. Fokkens L, Hogeweg P, Snel B (2012) Gene duplications contribute to the overrepresentation of interactions between proteins of a similar age. BMC Evol Biol 12:99. https://doi.org/10.1186/1471-2148-12-99

    Article  PubMed  PubMed Central  Google Scholar 

  41. Brum JR, Ignacio-Espinoza JC, Kim E-H et al (2016) Illuminating structural proteins in viral “dark matter” with metaproteomics. Proc Natl Acad Sci U S A 113:2436–2441. https://doi.org/10.1073/pnas.1525139113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Mukherjee S, Seshadri R, Varghese NJ et al (2017) 1,003 reference genomes of bacterial and archaeal isolates expand coverage of the tree of life. Nat Biotechnol. https://doi.org/10.1038/nbt.3886

  43. Maddox J (1989) Towards the calculation of DNA. Nature 339:577. https://doi.org/10.1038/339577a0

    Article  PubMed  CAS  Google Scholar 

  44. Buch I, Giorgino T, De Fabritiis G (2011) Complete reconstruction of an enzyme-inhibitor binding process by molecular dynamics simulations. Proc Natl Acad Sci U S A 108:10184–10189. https://doi.org/10.1073/pnas.1103547108

    Article  PubMed  PubMed Central  Google Scholar 

  45. Zhao G, Perilla JR, Yufenyuy EL et al (2013) Mature HIV-1 capsid structure by cryo-electron microscopy and all-atom molecular dynamics. Nature 497:643–646. https://doi.org/10.1038/nature12162

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Hamelberg D, Mongan J, McCammon JA (2004) Accelerated molecular dynamics: a promising and efficient simulation method for biomolecules. J Chem Phys 120:11919–11929. https://doi.org/10.1063/1.1755656

    Article  PubMed  CAS  Google Scholar 

  47. Friedrichs MS, Eastman P, Vaidyanathan V et al (2009) Accelerating molecular dynamic simulation on graphics processing units. J Comput Chem 30:864–872. https://doi.org/10.1002/jcc.21209

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Plattner N, Doerr S, De Fabritiis G, Noé F (2017) Complete protein–protein association kinetics in atomic detail revealed by molecular dynamics simulations and Markov modelling. Nat Chem 9:1005–1011. https://doi.org/10.1038/nchem.2785

    Article  PubMed  CAS  Google Scholar 

  49. Levy ED, Boeri Erba E, Robinson CV, Teichmann SA (2008) Assembly reflects evolution of protein complexes. Nature 453:1262–1265. https://doi.org/10.1038/nature06942

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Marsh JA, Hernández H, Hall Z et al (2013) Protein complexes are under evolutionary selection to assemble via ordered pathways. Cell 153:461–470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hall Z, Hernández H, Marsh JA et al (2013) The role of salt bridges, charge density, and subunit flexibility in determining disassembly routes of protein complexes. Structure 21:1325–1337. https://doi.org/10.1016/j.str.2013.06.004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Wells JN, Bergendahl LT, Marsh JA (2016) Operon gene order is optimized for ordered protein complex assembly. Cell Rep 14:679–685. https://doi.org/10.1016/j.celrep.2015.12.085

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. McShane E, Sin C, Zauber H et al (2016) Kinetic analysis of protein stability reveals age-dependent degradation. Cell 167:803–815.e21. https://doi.org/10.1016/j.cell.2016.09.015

    Article  PubMed  CAS  Google Scholar 

  54. Ahnert SE, Marsh JA, Hernández H et al (2015) Principles of assembly reveal a periodic table of protein complexes. Science 350:aaa2245. https://doi.org/10.1126/science.aaa2245

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

J.M. is supported by a Medical Research Council Career Development Award (MR/M02122X/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan N. Wells .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wells, J.N., Bergendahl, L.T., Marsh, J.A. (2018). Computational Modelling of Protein Complex Structure and Assembly. In: Marsh, J. (eds) Protein Complex Assembly. Methods in Molecular Biology, vol 1764. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7759-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7759-8_22

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7758-1

  • Online ISBN: 978-1-4939-7759-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics