[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Rough Set Approximation Based on Dynamic Granulation

  • Conference paper
Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing (RSFDGrC 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3641))

Abstract

In this paper, the concept of a granulation order is proposed in an information system. The positive approximation of a set under a granulation order is defined. Some properties of positive approximation are obtained. For a set of the universe in an information system, its approximation accuracy is monotonously increasing under a granulation order. This means that a proper family of granulations can be chosen for a target concept approximation according to the user requirements. An algorithm based on positive approximation is designed for decision rule mining, and its application is illustrated by an example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Zadeh, L.A.: Fuzzy Sets and Information Granularity. In: Gupta, M., Ragade, R., Yager, R. (eds.) Advances in Fuzzy Set Theory and Application, pp. 3–18. North-Holland, Amsterdam (1979)

    Google Scholar 

  2. Zadeh, L.A.: Fuzzy logic=computing with words. IEEE Transactions on Fuzzy Systems 4(1), 103–111 (1996)

    Article  MathSciNet  Google Scholar 

  3. Zadeh, L.A.: Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic. Fuzzy Sets and Systems 90, 111–127 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  4. Zadeh, L.A.: Some reflections on soft computing, granular computing and their roles in the conception, design and utilization of information intelligent systems. Soft Computing 2(1), 23–25 (1998)

    Google Scholar 

  5. Pawlak, Z.: Granularity of knowledge, indiscernibility and rough sets. In: Proceedings of 1998 IEEE International Conference on Fuzzy Systems, pp. 106–110 (1998)

    Google Scholar 

  6. Yao, Y.Y.: Granular computing: basic issues and possible solutions. In: Proceedings of the Fifth International Conference on Computing and Information, vol. I, pp. 186–189 (2000)

    Google Scholar 

  7. Lin, T.Y.: Granular computing on binary relations I: Data mining and neighborhood systems, II: Rough sets representations and belief functions. In: Polkowski, L., Skowron, A. (eds.) Rough Sets in Knowledge Discovery, vol. 1, pp. 107–140. Physica, Heidelberg (1998)

    Google Scholar 

  8. Zhang, L., Zhang, B.: Theory of fuzzy quotient space (methods of fuzzy granular computing). Journal of Software (in Chinese) 14(4), 770–776 (2003)

    MATH  Google Scholar 

  9. Klir, G.J.: Basic issues of computing with granular computing. In: Proceedings of 1998 IEEE International Conference on Fuzzy Systems, pp. 101–105 (1998)

    Google Scholar 

  10. Liang, J.Y., Shi, Z.Z.: The information entropy, rough entropy and knowledge granulation in rough set theory. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 12(1), 37–46 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  11. Liang, J.Y., Shi, Z.Z., Li, D.Y.: The information entropy, rough entropy and knowledge granulation in incomplete information systems. International Journal of General Systems (to appear)

    Google Scholar 

  12. Liu, Q.: Granules and applications of granular computing in logical reasoning. Journal of Computer Research and Development (in Chinese) 41(4), 546–551 (2004)

    Google Scholar 

  13. Zhang, W.X., Wu, W.Z., Liang, J.Y., Li, D.Y.: Theory and method of rough sets (in Chinese). Science Press, Beijing (2001)

    Google Scholar 

  14. Pawlak, Z.: Rough sets. Theoretical aspects of reasoning about data. Kluwer Academic Publishers, Dordrecht (1991)

    MATH  Google Scholar 

  15. Bazan, J., Nguyen, H.S., Skowron, A.: Rough set methods in approximation of hierarchical concepts. In: Tsumoto, S., Słowiński, R., Komorowski, J., Grzymała-Busse, J.W. (eds.) RSCTC 2004. LNCS (LNAI), vol. 3066, pp. 342–351. Springer, Heidelberg (2004)

    Google Scholar 

  16. Bazan, J., Nguyen, H.S., Skowron, A., Szczuka, M.: A view on rough set concept approximations. In: Wang, G., Liu, Q., Yao, Y., Skowron, A. (eds.) RSFDGrC 2003. LNCS (LNAI), vol. 2639, pp. 181–188. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liang, J., Qian, Y., Chu, C., Li, D., Wang, J. (2005). Rough Set Approximation Based on Dynamic Granulation. In: Ślęzak, D., Wang, G., Szczuka, M., Düntsch, I., Yao, Y. (eds) Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing. RSFDGrC 2005. Lecture Notes in Computer Science(), vol 3641. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11548669_72

Download citation

  • DOI: https://doi.org/10.1007/11548669_72

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28653-0

  • Online ISBN: 978-3-540-31825-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics