Abstract
Cellular automata(CA) is not only a discrete dynamical system with infinite dimensions, but also an important computational model. How simple can a CA be and yet support interesting and complicated behavior. There are many unsolved problems in the theory of CA, which appeal many researchers to focus their attentions on the field, especially subclass of CA – linear CA. These studies cover the topological properties, chaotical properties, invertibility, attractors and the classification of linear CA etc.. This is a survey of known results and open questions of D-dimensional linear CA over ℤ m .
Supported by Natural Science Foundation of China (NSFC) grant 60103015 and The Project-sponsored by SRF for ROCS, SEM.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Cattaneo, G., Formenti, E., Manzini, G., Margara, L.: Erogdicity, transitivity, and regularity for additive cellular automata over \({\mathbb Z}_m\). Theoret. Comput. Sci. 233, 147–164 (2000)
Codenotti, B., Margara, L.: Transitive cellular automata are sensitive. Amer. Math. Monthly 103, 58–62 (1996)
Čulik, K., Yu, S.: Undecidability of CA classification achemes. Complex Systems 2, 177–190 (1988)
D’amico, M., Manzini, G., Margara, L.: On computinmg the entropy of cellular automata. Lecture Notes in Mathematica, vol. 1443, pp. 470–481 (1998)
Devaney, R.L.: An introduction to chaotic dynamical systems, 2nd edn. Addison-Wesley, Reading (1989)
Favati, P., Lotti, G., Margara, L.: Additive one dimensional cellular automata are chaotic according to Devaney’s definition of chaos. Theoret. Comput. Sci. 174(1-2), 157–170 (1997)
Finelli, M., Manzini, G., Margara, L.: Lyapunov exponents vs expansivity and sensitivity in cellular automata. J. Complexity 14, 210–233 (1998)
Hurd, L., Kari, J., Čulik, K.: The topological entropy of cellular automata is uncomputable. Ergodic Theory and Dynamical Systems 12, 255–265 (1992)
Hurley, M.: Attractor in cellular automata. Ergodic Theory and Dynamical Systems 10, 131–140 (1990)
Ito, M., Osato, N., Nasu, M.: Linear cellular automata over \({\mathbb Z}_m\). J. Comput. System Sci. 27, 125–140 (1983)
Kari, J.: Reversibility of 2D cellular automata is undecidable. Physica D 45, 379–385 (1990)
Kurka, P.: Languages, equicontinuity and attractors in cellular automata. Ergodic Theory and Dynamical Systems 17, 417–433 (1997)
Kundsen, C.: Chaos without nonperiodicity. Amer. Math. Monthly 101, 563–565 (1994)
Manzini, G.: Characterization of sensitive linear cellular automata with respect to the counting distance. In: Brim, L., Gruska, J., Zlatuška, J. (eds.) MFCS 1998. LNCS, vol. 1450, pp. 825–833. Springer, Heidelberg (1998)
Manzini, G., Magara, L.: A complete and effciently computable topologyical calssification of D-dimensional linear cellula automata over \({\mathbb Z}_m\). Theoret. Comput. Sci. 221, 157–177 (1999)
Manzini, G., Margara, L.: Attractor of linear cellular automata. J. Comput. system Sci. 58, 597–610 (1999)
Sato, T.: Group Structured linear cellular automata over \({\mathbb Z}_m\). J. Comput. System Sci. 27, 18–23 (1999)
Sato, T.: Erogodicity of linear cellular automata over \({\mathbb Z}_m\). Inform. process. lett. 61(3), 169–172 (1997)
Sutner, K.: A note on Čulik-Yu classes. Complex Syst. 3, 107 (1989)
Wolfram, S.: Universility and complexity in cellular automata. Physica D 10, 1–35 (1984)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Jin, X., Wang, W. (2005). Complexity of Linear Cellular Automata over ℤ m . In: Wang, L., Chen, K., Ong, Y.S. (eds) Advances in Natural Computation. ICNC 2005. Lecture Notes in Computer Science, vol 3610. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11539087_160
Download citation
DOI: https://doi.org/10.1007/11539087_160
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-28323-2
Online ISBN: 978-3-540-31853-8
eBook Packages: Computer ScienceComputer Science (R0)