[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Operator Entanglement Growth Quantifies Complexity of Cellular Automata

  • Conference paper
  • First Online:
Computational Science – ICCS 2024 (ICCS 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14832))

Included in the following conference series:

  • 470 Accesses

Abstract

Cellular automata (CA) exemplify systems where simple local interaction rules can lead to intricate and complex emergent phenomena at large scales. The various types of dynamical behavior of CA are usually categorized empirically into Wolfram’s complexity classes. Here, we propose a quantitative measure, rooted in quantum information theory, to categorize the complexity of classical deterministic cellular automata. Specifically, we construct a Matrix Product Operator (MPO) of the transition matrix on the space of all possible CA configurations. We find that the growth of entropy of the singular value spectrum of the MPO reveals the complexity of the CA and can be used to characterize its dynamical behavior. This measure defines the concept of operator entanglement entropy for CA, demonstrating that quantum information measures can be meaningfully applied to classical deterministic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 159.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 199.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Here the value of 4 is a result of the \(\log _2 4 = 2\) bits of information which is exerted on each cell by its two direct neighbors..

  2. 2.

    The analogy with quantum systems is more profound, as this measure is exactly the entanglement entropy \(S_{L/2}(t) = - \textrm{Tr} \left[ \hat{\rho }_{L/2}(t) \log _2 \hat{\rho }_{L/2}(t) \right] \) of a reduced density matrix \(\hat{\rho }_{L/2}(t)\), constructed from the partial trace over half the CA cells of the Gram matrix of the time evolution operator: \(\hat{\rho }(t) = (\hat{\mathcal {T}}^t)^T \hat{\mathcal {T}}^t\).

  3. 3.

    Out of the 256 possible rules, many are related to each other by symmetry (left-right inversion, bit inversion or both), such that there are only 88 unique rules [5].

References

  1. Alba, V., Dubail, J., Medenjak, M.: Operator entanglement in interacting integrable quantum systems: the case of the rule 54 chain. Phys. Rev. Lett. 122(25), 250603 (2019). https://doi.org/10.1103/PhysRevLett.122.250603

  2. Arrighi, P.: An overview of quantum cellular automata. Nat. Comput. 18(4), 885–899 (2019). https://doi.org/10.1007/s11047-019-09762-6

  3. Bleh, D., Calarco, T., Montangero, S.: Quantum game of life. Europhys. Lett. 97(2), 20012 (2012). https://doi.org/10.1209/0295-5075/97/20012

  4. Buča, B., Garrahan, J.P., Prosen, T., Vanicat, M.: Exact large deviation statistics and trajectory phase transition of a deterministic boundary driven cellular automaton. Phys. Rev. E 100(2), 020103 (2019)

    Article  Google Scholar 

  5. Cattaneo, G., Formenti, E., Margara, L., Mauri, G.: Transformations of the one-dimensional cellular automata rule space. Parallel Comput. 23(11), 1593–1611 (1997). https://doi.org/10.1016/S0167-8191(97)00076-8

  6. Cattaneo, G., Formenti, E., Margara, L., Mauri, G.: On the dynamical behavior of chaotic cellular automata. Theor. Comput. Sci. 217(1), 31–51 (1999). https://doi.org/10.1016/S0304-3975(98)00149-2

  7. Cook, M., et al.: Universality in elementary cellular automata. Compl. Syst. 15(1), 1–40 (2004)

    MathSciNet  Google Scholar 

  8. Dubail, J.: Entanglement scaling of operators: a conformal field theory approach, with a glimpse of simulability of long-time dynamics in 1+ 1d. J. Phys. A: Math. Theor. 50(23), 234001 (2017). https://doi.org/10.1088/1751-8121/aa6f38

  9. Hillberry, L.E., et al.: Entangled quantum cellular automata, physical complexity, and goldilocks rules. Quant. Sci. Technol. 6(4), 045017 (2021). https://doi.org/10.1088/2058-9565/ac1c41

  10. Langton, C.G.: Computation at the edge of chaos: phase transitions and emergent computation. Physica D: Nonl. Phenom. 42(1–3), 12–37 (1990). https://doi.org/10.1016/0167-2789(90)90064-V

  11. Langton, C.G.: Self-reproduction in cellular automata. Physica D 10(1–2), 135–144 (1984)

    Article  Google Scholar 

  12. Ney, P.M., Notarnicola, S., Montangero, S., Morigi, G.: Entanglement in the quantum game of life. Phys. Rev. A 105(1), 012416 (2022). https://doi.org/10.1103/PhysRevA.105.012416

  13. Orús, R.: A practical introduction to tensor networks: matrix product states and projected entangled pair states. Annal. Phys. 349, 117–158 (2014). https://doi.org/10.1016/j.aop.2014.06.013

  14. Piroli, L., Cirac, J.I.: Quantum cellular automata, tensor networks, and area laws. Phys. Rev. Lett. 125(19), 190402 (2020). https://doi.org/10.1103/PhysRevLett.125.190402

  15. Prosen, T., Pižorn, I.: Operator space entanglement entropy in a transverse ising chain. Phys. Rev. A 76(3), 032316 (2007). https://doi.org/10.1103/PhysRevA.76.032316

  16. Prosen, T., Žnidarič, M.: Is the efficiency of classical simulations of quantum dynamics related to integrability? Phys. Rev. E 75(1), 015202 (2007). https://doi.org/10.1103/PhysRevE.75.015202

  17. Schollwöck, U.: The density-matrix renormalization group in the age of matrix product states. Annal. Phys. 326(1), 96–192 (2011). https://doi.org/10.1016/j.aop.2010.09.012

  18. Schuch, N., Wolf, M.M., Verstraete, F., Cirac, J.I.: Entropy scaling and simulability by matrix product states. Phys. Rev. Lett. 100(3), 030504 (2008). https://doi.org/10.1103/PhysRevLett.100.030504

  19. Takahashi, S.: Cellular automata and multifractals: dimension spectra of linear cellular automata. Physica D: Nonl. Phenom. 45(1–3), 36–48 (1990). https://doi.org/10.1016/0167-2789(90)90172-L

  20. Verstraete, F., Murg, V., Cirac, J.I.: Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems. Adv. Phys. 57(2), 143–224 (2008). https://doi.org/10.1080/14789940801912366

  21. Vispoel, M., Daly, A.J., Baetens, J.M.: Progress, gaps and obstacles in the classification of cellular automata. Physica D: Nonl. Phenom. 432, 133074 (2022). https://doi.org/10.1016/j.physd.2021.133074

  22. Wolfram, S.: Statistical mechanics of cellular automata. Rev. Mod. Phys. 55(3), 601 (1983). https://doi.org/10.1103/RevModPhys.55.601

  23. Wolfram, S.: Cellular automata as models of complexity. Nature 311(5985), 419–424 (1984). https://doi.org/10.1038/311419a0

  24. Wolfram, S.: Universality and complexity in cellular automata. Physica D: Nonl. Phenom. 10(1–2), 1–35 (1984). https://doi.org/10.1016/0167-2789(84)90245-8

  25. Zanardi, P.: Entanglement of quantum evolutions. Phys. Rev. A 63(4), 040304 (2001). https://doi.org/10.1103/PhysRevA.63.040304

  26. Zhou, T., Luitz, D.J.: Operator entanglement entropy of the time evolution operator in chaotic systems. Phys. Rev. B 95(9), 094206 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wout Merbis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bakker, C., Merbis, W. (2024). Operator Entanglement Growth Quantifies Complexity of Cellular Automata. In: Franco, L., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds) Computational Science – ICCS 2024. ICCS 2024. Lecture Notes in Computer Science, vol 14832. Springer, Cham. https://doi.org/10.1007/978-3-031-63749-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-63749-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-63748-3

  • Online ISBN: 978-3-031-63749-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics