[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Determining the Topology of Real Algebraic Surfaces

  • Conference paper
Mathematics of Surfaces XI

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3604))

Abstract

An algorithm is proposed to determine the topology of an implicit real algebraic surface in ℝ3. The algorithm consists of three steps: surface projection, projection curve topology determination and surface patches composition. The algorithm provides a curvilinear wireframe of the surface and the surface patches of the surface determined by the curvilinear wireframe, which have the same topology as the surface. Most of the surface patches are curvilinear polygons. Some examples are used to show that our algorithm is effective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arnborg, S., Feng, H.: Algebraic decomposition of regular curves. J. Symbolic Comput. 5(1,2), 131–140 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  2. Arnon, D.S., Collins, G., McCallum, S.: Cylindrical algebraic decomposition I: the basic algorithm. In: Buchberger, B., Collins, G.E. (eds.) Quantifier Elimination and Cylindrical Algebraic Decomposition, pp. 136–151. Springer, Heidelberg

    Google Scholar 

  3. Arnon, D.S., McCallum, S.: A polynomial-time algorithm for the topological type of a real algebraic curve. J. Symbolic Comput. 5(1,2), 213–236 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bajaj, C., Hoffmann, C.M., Lynch, R.E., Hopcroft, J.E.H.: Tracing surface intersection. Computer Aided Geometric Design 5, 285–307 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bajaj, C., Xu, G.L.: Spline approximations of real algebraic surfaces. J. Symbolic Comput. 23, 315–333 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  6. Basu, S., Pollack, R., Roy, M.-F.: Algorithms in real algebraic geometry. In: Algorithms and Computat. in Mathematics, vol. 10, Springer, Heidelberg (2003)

    Google Scholar 

  7. Feng, H.: Decomposition and computation of the topoplogy of plane real algebraic curves, PhD Thesis, The Royal Institute of Technology, Stockholm, Sweden (1992)

    Google Scholar 

  8. Fortuna, E., Gianni, P., Parenti, P., Traverso, C.: Algorithms to compute the topology of orientable real algebraic surfaces. J. Symbolic Comput. 36, 343–364 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  9. Gao, X.S., Li, M.: Rational quadratic approximation to real algebraic curves. Computer Aided Geometric Design 21, 805–828 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  10. Gatellier, G., Labrouzy, A., Mourrain, B., Técourt, J.P.: Computing the topology of three dimensional algebraic curves. In: Computational Methods for Algebraic Spline Surfaces, pp. 27–44. Springer, Heidelberg (2004)

    Google Scholar 

  11. Geismann, N., Hemmer, M., Schömer, E.: Computing a 3-dimensional cell in an arrangement of quadrics: exactly and actually. In: Symposium on Computational Geometry, pp. 264–273 (2001)

    Google Scholar 

  12. Gianni, P., Traverso, C.: Shape determination for real curves and surfaces. Ann. Univ. Ferrara Sez. VII(N.S.) 29, 87–109 (1983)

    MATH  MathSciNet  Google Scholar 

  13. Gonzalez-Vega, L., El Kahoui, M.: An improve upper complexity bound for the topology computation of a real algebraic plane curve. J. Complexity 12, 527–544 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  14. Gonzalez-Vega, L., Necula, I.: Efficient topology determination of implicitly defined algebraic place curves. Computer Aided Geometric Design 19, 719–743 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  15. Hart, J.C.: Morse theory for implicit surface modeling. In: Hege, H.-C., Polthier, K. (eds.) Mathematical Visualization, pp. 257–268. Springer, Heidelberg (1998)

    Google Scholar 

  16. Hong, H.: An efficient method for analyzing the topology of plane real algebraic curves. Math. Comput. Simulation 42(4-6), 571–582 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  17. Johnson, J.R.: Algorithms for polynomial real root isolation. Ph.d. Thesis. The Ohio state University (1991)

    Google Scholar 

  18. Keyser, J., Culver, T., Krishnan, S.: Efficient and exact manipulation of algebraic points and curve. Computer Aided Design 32(11), 649–662 (2000)

    Article  MATH  Google Scholar 

  19. Massey, W.S.: A basic course in algebraic topology. Springer, Heidelberg (1991)

    MATH  Google Scholar 

  20. Ni, X.L., Garland, M., Hart, J.C.: Fair morse functions for extracting topological structure of a surface mesh. In: Proc. SIGGRAPH 2004 (2004)

    Google Scholar 

  21. Sakkalis, T.: The topological configuration of a real algebraic curve. Bull. Australian Math. Soc. 43(1), 37–50 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  22. Stander, B.T., Hart, J.C.: Guaranteeing the topology of an implicit surface polygonization for interactive modeling. In: Proc. SIGGRAPH 1997, pp. 279–286 (1997)

    Google Scholar 

  23. Walker, R.J.: Algebraic curves. Springer, Heidelberg (1978)

    MATH  Google Scholar 

  24. Wu, W.T.: Mathematics Mechanization. Science Press/Kluwer, Beijing (2000)

    MATH  Google Scholar 

  25. Yang, L., Zhang, J.Z., Hou, X.R.: Nonlinear Algebraic Equation System and Automated Theorem Proving. Shanghai Scientific and Technological Education Publishing House, Shanghai (1996)

    Google Scholar 

  26. Zhang, S.G., Liu, D.Z., Feng, G.C.: Computer Mathematics: an introduction (in Chinese). Jilin University Press (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cheng, JS., Gao, XS., Li, M. (2005). Determining the Topology of Real Algebraic Surfaces. In: Martin, R., Bez, H., Sabin, M. (eds) Mathematics of Surfaces XI. Lecture Notes in Computer Science, vol 3604. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11537908_8

Download citation

  • DOI: https://doi.org/10.1007/11537908_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28225-9

  • Online ISBN: 978-3-540-31835-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics