[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Analysis of Company Growth Data Using Genetic Algorithms on Binary Trees

  • Conference paper
Advances in Knowledge Discovery and Data Mining (PAKDD 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3518))

Included in the following conference series:

  • 2649 Accesses

Abstract

This paper investigates why some companies grow faster than others, by data mining a survey of a large number of companies in Flanders (the northern part of Belgium). Faster or slower average growth over a time period is explained by building a classification tree containing several categorical variables (both quantitative and qualitative). The technique used – called genAID – splits the population at different levels. It is inspired by the Automatic Interaction Detector (AID) technique to find trees that explain the variability in average growth but uses a genetic algorithm to overcome some of the drawbacks of AID.

Classical AID or other tree-growing techniques usually generate a single tree for interpretation. This approach has been criticized because, due to the artifacts of data, spurious interactions may occur. genAID offers the user-analyst a set of trees, which are the best ones found over a number of generations of the genetic algorithm. The user-analyst is then offered the choice of choosing a tree by trading off explanatory power against either the ease of understanding or the conformity with an existing theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Adriaans, P., Zantinge, D.: Data Mining. Addison-Wesley, Harlow (1996)

    Google Scholar 

  2. Chen, M.-S., Han, J., Yu, P.S.: Data mining: an overview from a database perspective. IEEE Transactions on Knowledge and Data Engineering 8, 866–883 (1996)

    Article  Google Scholar 

  3. Einhorn, H.J.: Alchemy in the behavioral sciences. Public Opinion Quarterly 36, 367–378 (1972)

    Article  Google Scholar 

  4. Kass, G.V.: Significance testing in automatic interaction detection (AID). Applied Statistics 24, 178–189 (1975)

    Article  Google Scholar 

  5. Kass, G.V.: An exploratory technique for investigating large quantities of categorical data. Applied Statistics 29, 119–127 (1980)

    Article  Google Scholar 

  6. Koza, J.R.: Genetic Programming. MIT Press, Cambridge (1992)

    MATH  Google Scholar 

  7. Laveren, E., Limère, A., Cleeren, K., Van Bilsen, E.: Growth factors of flemish enterprises: an exploratory study over the periode 1993-1997. Brussels Economic Journal-Cahiers Economiques de Bruxelles 46(1), 5–38 (2003)

    Google Scholar 

  8. Morgan, J.N., Sonquist, J.A.: Problems in the analysis of survey data, and a proposal. Journal of the American Statistical Association 58, 415–435 (1963)

    Article  MATH  Google Scholar 

  9. Ooghe, H., Verbaere, E., Croucke, M.: Ondernemingsdimensie en financiële structuur. Maandblad voor Accountancy en Bedrijfseconomie 3, 62–77 (1988) (in Dutch)

    Google Scholar 

  10. Quinlan, J.R.: Induction of decision trees. Machine Learning 1, 81–106 (1986)

    Google Scholar 

  11. Quinlan, J.R.: C4.5: Programs for machine learning. Morgan Kaufmann, San Francisco (1993)

    Google Scholar 

  12. Smith, M.: Neural networks for statistical modeling. Thomson, Boston (1996)

    Google Scholar 

  13. Sonquist, J.A., Baker, E., Morgan, J.: Searching for structure. Technical report, Institute for Social Research. University of Michigan, Ann Arbor (1973)

    Google Scholar 

  14. Söorensen, K., Janssens, G.K.: Data mining with genetic algorithms on binary trees. European Journal of Operational Research 151, 253–264 (2003)

    Article  MathSciNet  Google Scholar 

  15. Van Hove, H., Verschoren, A.: Genetic algorithms and trees: part 1: recognition trees (the fixed width case). Computers and Artificial Intelligence 13, 453–476 (1994)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Janssens, G.K., Sösrensen, K., Limère, A., Vanhoof, K. (2005). Analysis of Company Growth Data Using Genetic Algorithms on Binary Trees. In: Ho, T.B., Cheung, D., Liu, H. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2005. Lecture Notes in Computer Science(), vol 3518. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11430919_29

Download citation

  • DOI: https://doi.org/10.1007/11430919_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26076-9

  • Online ISBN: 978-3-540-31935-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics