[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter July 29, 2022

Sensitivity analysis of the concentration transport estimation in a turbulent flow

  • Dmitriy Kolyukhin , Karl K. Sabelfeld ORCID logo EMAIL logo and Ivan Dimov

Abstract

The present study addresses the sensitivity analysis of particle concentration dispersion in the turbulent flow. A stochastic spectral model of turbulence is used to simulate the particle transfer. Sensitivity analysis is performed by estimations of Morris and Sobol indices. This study allows to define the significant and nonsignificant model parameters. It also gives an idea of the qualitative behavior of the stochastic model used.

MSC 2010: 65C05; 65C20; 93B35

Award Identifier / Grant number: 20-51-18009

Award Identifier / Grant number: KP-06-Russia/17

Funding statement: The financial support from RFBR (grant no. 20-51-18009) as well as from NSF of Bulgaria (grant no. KP-06-Russia/17) is gratefully acknowledged.

References

[1] A. V. Aleksandrov, L. V. Dorodnitsyn, A. P. Duben’ and D. R. Kolyukhin, Generation of nonhomogeneous turbulent fvelocity fields by modified randomized spectral method, Comput. Math. Methods 31 (2020), no. 3, 308–319. Search in Google Scholar

[2] F. Campolongo, J. Cariboni and A. Saltelli, An effective screening design for sensitivity analysis of large models, Environmental Model. Softw. 22 (2007), no. 10, 1509–1518. 10.1016/j.envsoft.2006.10.004Search in Google Scholar

[3] F. Cannavo, Sensitivity analysis for volcanic source modeling quality assessment and model selection, Comput. Geosci. 44 (2012), 52–59. 10.1016/j.cageo.2012.03.008Search in Google Scholar

[4] I. Celik, RANS/LES/DES/DNS: The future prospects of turbulence modeling, J. Fluids Eng. 127 (2005), no. 5, 829–830. 10.1115/1.2033011Search in Google Scholar

[5] I. Dimov, V. Todorov and K. Sabelfeld, A study of highly efficient stochastic sequences for multidimensional sensitivity analysis, Monte Carlo Methods Appl. 28 (2022), 1–12. 10.1515/mcma-2022-2101Search in Google Scholar

[6] K. Feng, Z. Lu and C. Yang, Enhanced Morris method for global sensitivity analysis: Good proxy of Sobol’s index, Struct. Multidiscip. Optim. 59 (2019), 373–387. 10.1007/s00158-018-2071-7Search in Google Scholar

[7] B. Iooss and P. Lemaitre, A review on global sensitivity analysis methods, Uncertainty Management in Simulation-Optimization of Complex Systems: Algorithms and Applications, Springer, Boston (2015), 101–122. 10.1007/978-1-4899-7547-8_5Search in Google Scholar

[8] D. Kolyukhin, Global sensitivity analysis of statistical models by double randomization method, Monte Carlo Methods Appl. 27 (2021), no. 4, 341–346. 10.1515/mcma-2021-2096Search in Google Scholar

[9] R. Kraichnan, Diffusion by a random velocity field, Phys. Fluids 13 (1970), 22–31. 10.1063/1.1692799Search in Google Scholar

[10] O. Kurbanmuradov, K. Sabelfeld and D. Koluhin, Stochastic Lagrangian models for two-particle motion in turbulent flows, numerical results, Monte Carlo Methods Appl. 3 (1997), no. 3, 199–223. 10.1515/mcma.1997.3.3.199Search in Google Scholar

[11] G. A. Mikhailov, Minimization of Computational Costs of Non-Analogue Monte Carlo Methods, Soviet East European Math. 5, World Scientific, Singapore, 1991. 10.1142/1440Search in Google Scholar

[12] A. S. Monin and A. M. Yaglom, Statistical Fluid Mechanics. Vol. 2, MIT Press, Cambridge, 1975. Search in Google Scholar

[13] M. D. Morris, Factorial sampling plans for preliminary computational experiments, Technometrics 33 (1991), no. 2, 161–174. 10.1080/00401706.1991.10484804Search in Google Scholar

[14] J. Park, G. Yang, A. Satija, C. Scheidt and J. Caers, DGSA: A Matlab toolbox for distance-based generalized sensitivity analysis of geoscientific computer experiments, Comput. Geosci. 97 (2016), 15–29. 10.1016/j.cageo.2016.08.021Search in Google Scholar

[15] F. Pianosi, K. Beven, J. Freer, J. W. Hall, J. Rougier, D. B. Stephensone and T. Wagener, Sensitivity analysis of environmental models: A systematic review with practical workflow, Environmental Model. Softw. 79 (2016), 214–232. 10.1061/9780784413609.030Search in Google Scholar

[16] S. B. Pope, Turblent Flows, Cambridge University, Cambridge, 2000. 10.1017/CBO9780511840531Search in Google Scholar

[17] U. Rannik, M. Aubinet, O. Kurbanmuradov, K. K. Sabelfeld, T. Markkanen and T. Vesala, Footprint analysis for measurements over a heterogeneous forest, Boundary-Layer Meteorol. 97 (2000), 137–166. 10.1023/A:1002702810929Search in Google Scholar

[18] U. Reuter and M. Liebscher, Global sensitivity analysis in view of nonlinear structural behavior, LSDYNA Anwenderforum, Bamberg, 2008. Search in Google Scholar

[19] K. K. Sabelfeld, Monte Carlo Methods in Boundary Value Problems, Springer, New York, 1991. 10.1007/978-3-642-75977-2Search in Google Scholar

[20] K. K. Sabelfeld and O. A. Kurbanmuradov, Numerical statistical model of classical incompressible isotropic turbulence, Soviet J. Numer. Math. Math. Anal. 5 (1990), no. 3, 251–263. 10.1515/rnam.1990.5.3.251Search in Google Scholar

[21] A. Saltelli, Global Sensitivity Analysis: An Introduction, Sensitivity Analysis of Model Output, Los Alamos National Laboratory, Los Alamos (2005), 27–43. Search in Google Scholar

[22] A. Smirnov, S. Shi and I. Celik, Random flow generation technique for large eddy simulations and particle-dynamics modeling, J. Fluids Eng. 123 (2001), no. 2, 359–371. 10.1115/1.1369598Search in Google Scholar

[23] I. M. Sobol’, Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates, Math. Comput. Simulation 55 (2001), 271–280. 10.1016/S0378-4754(00)00270-6Search in Google Scholar

[24] I. M. Sobol’, S. Tarantola, D. Gatelli, S. S. Kucherenko and W. Mauntz, Estimating the approximation error when fixing unessential factors in global sensitivity analysis, Reliab. Eng. Syst. Safety 92 (2007), 957–960. 10.1016/j.ress.2006.07.001Search in Google Scholar

[25] H. Sohier, J. L. Farges and H. Piet-Lahanier, Improvement of the representativity of the Morris method for air-launch-to-orbit separation, IFAC Proc. 47 (2014), no. 3, 7954–7959. 10.3182/20140824-6-ZA-1003.01968Search in Google Scholar

[26] R. Spear and G. Hornberger, Eutrophication in peel inlet. II. Identification of critical uncertainties via generalized sensitivity analysis, Water Res. 14 (1980), 43–49. 10.1016/0043-1354(80)90040-8Search in Google Scholar

[27] V. Todorov, I. Dimov, Tz. Ostromsky and R. Georgieva, Optimized stochastic methods for sensitivity analysis for large-scale air pollution model, Ann. Comput. Sci. Inform. Syst. 26 (2021), 85–88. 10.15439/2021F51Search in Google Scholar

[28] T. Wagener, D. Boyle, M. Lees, H. Wheater, H. Gupta and S. Sorooshian, A framework for development and application of hydrological models, Hydrol. Earth Syst. Sci. 5 (2001), 13–26. 10.5194/hess-5-13-2001Search in Google Scholar

[29] A. Wang and D. P. Solomatine, Experience of sensitivity analysis: Comparing six methods, on three hydrological models, with three performance criteria, Water 11 (2019), no. 5, Paper No. 1062. 10.3390/w11051062Search in Google Scholar

[30] D. C. Wilcox, Turbulence Modeling for CFD, 3rd ed., DCW Industries, La Cañada Flintridge, 2006. Search in Google Scholar

Received: 2022-02-09
Revised: 2022-07-17
Accepted: 2022-07-20
Published Online: 2022-07-29
Published in Print: 2022-09-01

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 3.1.2025 from https://www.degruyter.com/document/doi/10.1515/mcma-2022-2116/html
Scroll to top button