Abstract
The paper addresses a global sensitivity analysis of complex models. The work presents a generalization of the hierarchical statistical models where uncertain parameters determine the distribution of statistical models. The double randomization method is applied to increase the efficiency of the Monte Carlo estimation of Sobol indices. Numerical computations are provided to study the accuracy and efficiency of the proposed technique. The issue of optimization of the suggested approach is considered.
Funding source: Russian Foundation for Basic Research
Award Identifier / Grant number: 20-51-18009
Funding statement: The reported study was funded by RFBR and NSFB, project number 20-51-18009.
References
[1] A. Burmistrov and M. Korotchenko, Double randomization method for estimating the moments of solution to vehicular traffic problems with random parameters, Russ. J. Numer. Anal. Math. Model. 35 (2020), no. 3, 143–152. 10.1515/rnam-2020-0011Search in Google Scholar
[2] Y. Edery, A. Guadagnini, H. Scher and B. Berkowitz, Origins of anomalous transport in heterogeneous media: Structural and dynamic controls, Water Resour. Res. 50 (2014), 1490–1505. 10.1002/2013WR015111Search in Google Scholar
[3] C. C. Frippiat and A. E. Holeyman, A comparative review of upscaling methods for solute transport in heterogeneous porous media, J. Hydrology 362 (2010), 150–176. 10.1016/j.jhydrol.2008.08.015Search in Google Scholar
[4] D. Kolyukhin and M. Espedal, Numerical calculation of effective permeability by double randomization Monte Carlo method, Int. J. Numer. Anal. Model. 7 (2010), no. 4, 607–618. Search in Google Scholar
[5] D. Kolyukhin, Global sensitivity analysis for a stochastic flow problem, Monte Carlo Methods Appl. 24 (2018), no. 4, 263–270. 10.1515/mcma-2018-2022Search in Google Scholar
[6] D. Kolyukhin, Sensitivity analysis of discrete fracture network connectivity characteristics, Math. Geosci. (2021), 10.1007/s11004-021-09966-6. 10.1007/s11004-021-09966-6Search in Google Scholar
[7] G. A. Mikhailov, Minimization of Computational Costs of Non-Analogue Monte Carlo Methods, Ser. Soviet East European Math. 5, World Scientific, Singapore, 1991. 10.1142/1440Search in Google Scholar
[8] G. A. Mikhailov, New Monte Carlo Methods with Estimating Derivatives, VSP, Utrecht, 1995. Search in Google Scholar
[9] J. Park, G. Yang, A. Satija, C. Scheidt and J. Caers, DGSA: A Matlab toolbox for distance-based generalized sensitivity analysis of geoscientific computer experiments, Comput. Geosci. 97 (2016), 15–29. 10.1016/j.cageo.2016.08.021Search in Google Scholar
[10] U. Reuter and M. Liebscher, Global sensitivity analysis in view of nonlinear structural behavior, LSDYNA Anwenderforum, Bamberg, 2008. Search in Google Scholar
[11] R. Y. Rubinstein and D. P. Kroese, Simulation and the Monte Carlo Method, 3rd ed., John Wiley and Sons, Hoboken, 2017. 10.1002/9781118631980Search in Google Scholar
[12] U. Rannik, M. Aubinet, O. Kurbanmuradov, K. K. Sabelfeld, T. Markkanen and T. Vesala, Footprint analysis for measurements over a heterogeneous forest, Boundary-Layer Meteorol. 97 (2000), 137–166. 10.1023/A:1002702810929Search in Google Scholar
[13] K. K. Sabelfeld, Monte Carlo Methods in Boundary Value Problems, Springer, New York, 1991. 10.1007/978-3-642-75977-2Search in Google Scholar
[14] A. Saltelli, Global Sensitivity analysis: An introduction, Sensitivity Analysis of Model Output, Los Alamos National Laboratory, Los Alamos (2005), 27–43. Search in Google Scholar
[15] I. M. Sobol’, Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates, Math. Comput. Simulation 55 (2001), 271–280. 10.1016/S0378-4754(00)00270-6Search in Google Scholar
[16] I. M. Sobol’, S. Tarantola, D. Gatelli, S. S. Kucherenko and W. Mauntz, Estimating the approximation error when fixing unessential factors in global sensitivity analysis, Reliab. Eng. Syst. Safety 92 (2007), 957–960. 10.1016/j.ress.2006.07.001Search in Google Scholar
[17] K. Um, X. Zhang, M. Katsoulakis, P. Plechac and D. M. Tartakovsky, Global sensitivity analysis of multiscale properties of porous materials, J. Appl. Phys. 123 (2018), Article ID 075103. 10.1063/1.5009691Search in Google Scholar
[18] A. Vela-Martin and J. Jimenez, Entropy, irreversibility and cascades in the inertial range of isotropic turbulence, J. Fluid Mech. 915 (2021), 957–960. 10.1017/jfm.2021.105Search in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston