[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

Real-time influence maximization on dynamic social streams

Published: 01 March 2017 Publication History

Abstract

Influence maximization (IM), which selects a set of k users (called seeds) to maximize the influence spread over a social network, is a fundamental problem in a wide range of applications such as viral marketing and network monitoring. Existing IM solutions fail to consider the highly dynamic nature of social influence, which results in either poor seed qualities or long processing time when the network evolves. To address this problem, we define a novel IM query named Stream Influence Maximization (SIM) on social streams. Technically, SIM adopts the sliding window model and maintains a set of k seeds with the largest influence value over the most recent social actions. Next, we propose the Influential Checkpoints (IC) framework to facilitate continuous SIM query processing. The IC framework creates a checkpoint for each window shift and ensures an ε-approximate solution. To improve its efficiency, we further devise a Sparse Influential Checkpoints (SIC) framework which selectively keeps O(logN/β checkpoints for a sliding window of size N and maintains an ε(1−β)/2-approximate solution. Experimental results on both real-world and synthetic datasets confirm the effectiveness and efficiency of our proposed frameworks against the state-of-the-art IM approaches.

References

[1]
https://arxiv.org/abs/1702.01586.
[2]
C. C. Aggarwal, S. Lin, and P. S. Yu. On influential node discovery in dynamic social networks. In SDM, pages 636--647, 2012.
[3]
G. Ausiello, N. Boria, A. Giannakos, G. Lucarelli, and V. T. Paschos. Online maximum k-coverage. Discrete Applied Mathematics, 160(13--14):1901--1913, 2012.
[4]
A. Badanidiyuru, B. Mirzasoleiman, A. Karbasi, and A. Krause. Streaming submodular maximization: Massive data summarization on the fly. In KDD, pages 671--680, 2014.
[5]
N. Barbieri, F. Bonchi, and G. Manco. Topic-aware social influence propagation models. In ICDM, pages 81--90, 2012.
[6]
S. Bharathi, D. Kempe, and M. Salek. Competitive influence maximization in social networks. In WINE, pages 306--311, 2007.
[7]
C. Borgs, M. Brautbar, J. Chayes, and B. Lucier. Maximizing social influence in nearly optimal time. In SODA, pages 946--957, 2014.
[8]
V. Braverman and R. Ostrovsky. Smooth histograms for sliding windows. In FOCS, pages 283--293, 2007.
[9]
D. Chakrabarti, Y. Zhan, and C. Faloutsos. R-mat: A recursive model for graph mining. In SDM, pages 442--446, 2004.
[10]
S. Chen, J. Fan, G. Li, J. Feng, K.-L. Tan, and J. Tang. Online topic-aware influence maximization. PVLDB, 8(6):666--677, 2015.
[11]
X. Chen, G. Song, X. He, and K. Xie. On influential nodes tracking in dynamic social networks. In SDM, pages 613--621, 2015.
[12]
M. Datar, A. Gionis, P. Indyk, and R. Motwani. Maintaining stream statistics over sliding windows. SIAM Journal on Computing, 31(6):1794--1813, 2002.
[13]
P. Domingos and M. Richardson. Mining the network value of customers. In KDD, pages 57--66, 2001.
[14]
U. Feige. A threshold of ln n for approximating set cover. Journal of the ACM, 45(4):634--652, 1998.
[15]
A. Goyal, F. Bonchi, and L. V. S. Lakshmanan. Learning influence probabilities in social networks. In WSDM, pages 241--250, 2010.
[16]
A. Goyal, F. Bonchi, and L. V. S. Lakshmanan. A data-based approach to social influence maximization. PVLDB, 5(1):73--84, 2011.
[17]
L. Guo, D. Zhang, W. Wu, G. Cong, and K.-L. Tan. Influence maximization in trajectory databases. IEEE Transactions on Knowledge and Data Engineering, 29(3):627--641, 2017.
[18]
D. Kempe, J. Kleinberg, and E. Tardos. Maximizing the spread of influence through a social network. In KDD, pages 137--146, 2003.
[19]
R. Kumar, B. Moseley, S. Vassilvitskii, and A. Vattani. Fast greedy algorithms in mapreduce and streaming. ACM Transactions on Parallel Computing, 2(3):1--14, 2015.
[20]
K. Kutzkov, A. Bifet, F. Bonchi, and A. Gionis. Strip: Stream learning of influence probabilities. In KDD, pages 275--283, 2013.
[21]
J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. VanBriesen, and N. Glance. Cost-effective outbreak detection in networks. In KDD, pages 420--429, 2007.
[22]
G. Li, S. Chen, J. Feng, K.-L. Tan, and W.-S. Li. Efficient location-aware influence maximization. In SIGMOD, pages 87--98, 2014.
[23]
H. Li, S. S. Bhowmick, J. Cui, Y. Gao, and J. Ma. Getreal: Towards realistic selection of influence maximization strategies in competitive networks. In SIGMOD, pages 1525--1537, 2015.
[24]
H. Li, S. S. Bhowmick, A. Sun, and J. Cui. Conformity-aware influence maximization in online social networks. The VLDB Journal, 24(1):117--141, 2015.
[25]
Y. Li, J. Fan, D. Zhang, and K.-L. Tan. Discovering your selling points: Personalized social influential tag exploration. In SIGMOD, 2017. to appear.
[26]
Y. Li, D. Zhang, and K.-L. Tan. Real-time targeted influence maximization for online advertisements. PVLDB, 8(10):1070--1081, 2015.
[27]
W. Lu, W. Chen, and L. V. S. Lakshmanan. From competition to complementarity: Comparative influence diffusion and maximization. PVLDB, 9(2):60--71, 2015.
[28]
G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An analysis of approximations for maximizing submodular set functions---i. Mathematical Programming, 14(1):265--294, 1978.
[29]
H. T. Nguyen, M. T. Thai, and T. N. Dinh. Stop-and-stare: Optimal sampling algorithms for viral marketing in billion-scale networks. In SIGMOD, pages 695--710, 2016.
[30]
N. Ohsaka, T. Akiba, Y. Yoshida, and K.-i. Kawarabayashi. Dynamic influence analysis in evolving networks. PVLDB, 9(12):1077--1088, 2016.
[31]
B. Saha and L. Getoor. On maximum coverage in the streaming model and application to multi-topic blog-watch. In SDM, pages 697--708, 2009.
[32]
G. Soda, A. Usai, and A. Zaheer. Network memory: The influence of past and current networks on performance. Academy of Management Journal, 47(6):893--906, 2004.
[33]
X. Song, B. L. Tseng, C.-Y. Lin, and M.-T. Sun. Personalized recommendation driven by information flow. In SIGIR, pages 509--516, 2006.
[34]
K. Subbian, C. C. Aggarwal, and J. Srivastava. Querying and tracking influencers in social streams. In WSDM, pages 493--502, 2016.
[35]
Y. Tang, Y. Shi, and X. Xiao. Influence maximization in near-linear time: A martingale approach. In SIGMOD, pages 1539--1554, 2015.
[36]
Y. Tang, X. Xiao, and Y. Shi. Influence maximization: near-optimal time complexity meets practical efficiency. In SIGMOD, pages 75--86, 2014.
[37]
X. Wang, Y. Zhang, W. Zhang, and X. Lin. Distance-aware influence maximization in geo-social network. In ICDE, pages 1--12, 2016.
[38]
H. Zhuang, Y. Sun, J. Tang, J. Zhang, and X. Sun. Influence maximization in dynamic social networks. In ICDM, pages 1313--1318, 2013.

Cited By

View all

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Proceedings of the VLDB Endowment
Proceedings of the VLDB Endowment  Volume 10, Issue 7
March 2017
132 pages
ISSN:2150-8097
Issue’s Table of Contents

Publisher

VLDB Endowment

Publication History

Published: 01 March 2017
Published in PVLDB Volume 10, Issue 7

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)6
  • Downloads (Last 6 weeks)0
Reflects downloads up to 06 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Influence Maximization via Vertex CounteringProceedings of the VLDB Endowment10.14778/3648160.364817117:6(1297-1309)Online publication date: 3-May-2024
  • (2023)BatchedGreedy: A batch processing approach for influence maximization with candidate constraintApplied Intelligence10.1007/s10489-022-03854-053:6(6909-6925)Online publication date: 1-Mar-2023
  • (2022)Influence maximization in real-world closed social networksProceedings of the VLDB Endowment10.14778/3565816.356582116:2(180-192)Online publication date: 1-Oct-2022
  • (2022)Social Network Analysis: A Survey on Measure, Structure, Language Information Analysis, Privacy, and ApplicationsACM Transactions on Asian and Low-Resource Language Information Processing10.1145/353973222:5(1-47)Online publication date: 8-Jun-2022
  • (2022)Influence Maximization Revisited: Efficient Sampling with Bound TightenedACM Transactions on Database Systems10.1145/353381747:3(1-45)Online publication date: 19-May-2022
  • (2021)Analysis of influence contribution in social advertisingProceedings of the VLDB Endowment10.14778/3489496.348951415:2(348-360)Online publication date: 1-Oct-2021
  • (2021)Accelerating Depth-First Traversal by Graph OrderingProceedings of the 33rd International Conference on Scientific and Statistical Database Management10.1145/3468791.3468796(13-24)Online publication date: 6-Jul-2021
  • (2021)Incremental Group-Level Popularity Prediction in Online Social NetworksACM Transactions on Internet Technology10.1145/346183922:1(1-26)Online publication date: 14-Sep-2021
  • (2021)Forecasting Interaction Order on Temporal GraphsProceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining10.1145/3447548.3467341(1884-1893)Online publication date: 14-Aug-2021
  • (2021)Fair and Representative Subset Selection from Data StreamsProceedings of the Web Conference 202110.1145/3442381.3449799(1340-1350)Online publication date: 19-Apr-2021
  • Show More Cited By

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media