default search action
Harri Lähdesmäki
Person information
- affiliation: Aalto University, Espoo, Finland
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j45]Siddharth Ramchandran, Gleb Tikhonov, Otto Lönnroth, Pekka Tiikkainen, Harri Lähdesmäki:
Learning conditional variational autoencoders with missing covariates. Pattern Recognit. 147: 110113 (2024) - [c20]Manuel Haussmann, Tran Minh Son Le, Viivi Halla-aho, Samu Kurki, Jussi Leinonen, Miika Koskinen, Samuel Kaski, Harri Lähdesmäki:
Estimating treatment effects from single-arm trials via latent-variable modeling. AISTATS 2024: 2926-2934 - [c19]Maksim Sinelnikov, Manuel Haussmann, Harri Lähdesmäki:
Latent variable model for high-dimensional point process with structured missingness. ICML 2024 - [i22]Maksim Sinelnikov, Manuel Haussmann, Harri Lähdesmäki:
Latent variable model for high-dimensional point process with structured missingness. CoRR abs/2402.05758 (2024) - [i21]Alexandru Dumitrescu, Dani Korpela, Markus Heinonen, Yogesh Verma, Valerii Iakovlev, Vikas Garg, Harri Lähdesmäki:
Field-based Molecule Generation. CoRR abs/2402.15864 (2024) - [i20]Valerii Iakovlev, Harri Lähdesmäki:
Modeling Randomly Observed Spatiotemporal Dynamical Systems. CoRR abs/2406.00368 (2024) - [i19]Priscilla Ong, Manuel Haußmann, Otto Lönnroth, Harri Lähdesmäki:
Latent mixed-effect models for high-dimensional longitudinal data. CoRR abs/2409.11008 (2024) - [i18]Mine Ögretir, Miika Koskinen, Juha Sinisalo, Risto Renkonen, Harri Lähdesmäki:
SeqRisk: Transformer-augmented latent variable model for improved survival prediction with longitudinal data. CoRR abs/2409.12709 (2024) - 2023
- [j44]Emmi Jokinen, Alexandru Dumitrescu, Jani Huuhtanen, Vladimir Gligorijevic, Satu Mustjoki, Richard Bonneau, Markus Heinonen, Harri Lähdesmäki:
TCRconv: predicting recognition between T cell receptors and epitopes using contextualized motifs. Bioinform. 39(1) (2023) - [j43]Dani Korpela, Emmi Jokinen, Alexandru Dumitrescu, Jani Huuhtanen, Satu Mustjoki, Harri Lähdesmäki:
EPIC-TRACE: predicting TCR binding to unseen epitopes using attention and contextualized embeddings. Bioinform. 39(12) (2023) - [j42]Alexandru Dumitrescu, Emmi Jokinen, Anja Paatero, Juho Kellosalo, Ville O. Paavilainen, Harri Lähdesmäki:
TSignal: a transformer model for signal peptide prediction. Bioinform. 39(Supplement-1): 347-356 (2023) - [j41]Maia H. Malonzo, Harri Lähdesmäki:
LuxHMM: DNA methylation analysis with genome segmentation via hidden Markov model. BMC Bioinform. 24(1): 58 (2023) - [c18]Valerii Iakovlev, Çagatay Yildiz, Markus Heinonen, Harri Lähdesmäki:
Latent Neural ODEs with Sparse Bayesian Multiple Shooting. ICLR 2023 - [c17]Valerii Iakovlev, Markus Heinonen, Harri Lähdesmäki:
Learning Space-Time Continuous Latent Neural PDEs from Partially Observed States. NeurIPS 2023 - [i17]Valerii Iakovlev, Markus Heinonen, Harri Lähdesmäki:
Learning Space-Time Continuous Neural PDEs from Partially Observed States. CoRR abs/2307.04110 (2023) - [i16]Manuel Haussmann, Tran Minh Son Le, Viivi Halla-aho, Samu Kurki, Jussi Leinonen, Miika Koskinen, Samuel Kaski, Harri Lähdesmäki:
Estimating treatment effects from single-arm trials via latent-variable modeling. CoRR abs/2311.03002 (2023) - 2022
- [j40]Maria Osmala, Gökcen Eraslan, Harri Lähdesmäki:
ChromDMM: a Dirichlet-multinomial mixture model for clustering heterogeneous epigenetic data. Bioinform. 38(16): 3863-3870 (2022) - [j39]Maia H. Malonzo, Viivi Halla-aho, Mikko Konki, Riikka J. Lund, Harri Lähdesmäki:
LuxRep: a technical replicate-aware method for bisulfite sequencing data analysis. BMC Bioinform. 23(1): 41 (2022) - [j38]Viivi Halla-aho, Harri Lähdesmäki:
Probabilistic modeling methods for cell-free DNA methylation based cancer classification. BMC Bioinform. 23(1): 119 (2022) - [j37]Anni A. Antikainen, Markus Heinonen, Harri Lähdesmäki:
Modeling binding specificities of transcription factor pairs with random forests. BMC Bioinform. 23(1): 212 (2022) - [j36]Michele Vantini, Henrik Mannerström, Sini Rautio, Helena Ahlfors, Brigitta Stockinger, Harri Lähdesmäki:
PairGP: Gaussian process modeling of longitudinal data from paired multi-condition studies. Comput. Biol. Medicine 143: 105268 (2022) - [c16]Mine Ögretir, Siddharth Ramchandran, Dimitrios Papatheodorou, Harri Lähdesmäki:
A Variational Autoencoder for Heterogeneous Temporal and Longitudinal Data. ICMLA 2022: 1522-1529 - [c15]Pashupati Hegde, Çagatay Yildiz, Harri Lähdesmäki, Samuel Kaski, Markus Heinonen:
Variational multiple shooting for Bayesian ODEs with Gaussian processes. UAI 2022: 790-799 - [i15]Siddharth Ramchandran, Gleb Tikhonov, Otto Lönnroth, Pekka Tiikkainen, Harri Lähdesmäki:
Learning Conditional Variational Autoencoders with Missing Covariates. CoRR abs/2203.01218 (2022) - [i14]Mine Ögretir, Siddharth Ramchandran, Dimitrios Papatheodorou, Harri Lähdesmäki:
A Variational Autoencoder for Heterogeneous Temporal and Longitudinal Data. CoRR abs/2204.09369 (2022) - [i13]Valerii Iakovlev, Çagatay Yildiz, Markus Heinonen, Harri Lähdesmäki:
Latent Neural ODEs with Sparse Bayesian Multiple Shooting. CoRR abs/2210.03466 (2022) - 2021
- [j35]Juho Timonen, Henrik Mannerström, Aki Vehtari, Harri Lähdesmäki:
lgpr: an interpretable non-parametric method for inferring covariate effects from longitudinal data. Bioinform. 37(13): 1860-1867 (2021) - [j34]Emmi Jokinen, Jani Huuhtanen, Satu Mustjoki, Markus Heinonen, Harri Lähdesmäki:
Predicting recognition between T cell receptors and epitopes with TCRGP. PLoS Comput. Biol. 17(3) (2021) - [c14]Siddharth Ramchandran, Miika Koskinen, Harri Lähdesmäki:
Latent Gaussian process with composite likelihoods and numerical quadrature. AISTATS 2021: 3718-3726 - [c13]Siddharth Ramchandran, Gleb Tikhonov, Kalle Kujanpää, Miika Koskinen, Harri Lähdesmäki:
Longitudinal Variational Autoencoder. AISTATS 2021: 3898-3906 - [c12]Valerii Iakovlev, Markus Heinonen, Harri Lähdesmäki:
Learning continuous-time PDEs from sparse data with graph neural networks. ICLR 2021 - [c11]Çagatay Yildiz, Markus Heinonen, Harri Lähdesmäki:
Continuous-time Model-based Reinforcement Learning. ICML 2021: 12009-12018 - [i12]Çagatay Yildiz, Markus Heinonen, Harri Lähdesmäki:
Continuous-Time Model-Based Reinforcement Learning. CoRR abs/2102.04764 (2021) - [i11]Pashupati Hegde, Çagatay Yildiz, Harri Lähdesmäki, Samuel Kaski, Markus Heinonen:
Bayesian inference of ODEs with Gaussian processes. CoRR abs/2106.10905 (2021) - [i10]Juho Timonen, Harri Lähdesmäki:
Scalable mixed-domain Gaussian processes. CoRR abs/2111.02019 (2021) - 2020
- [j33]Viivi Halla-aho, Harri Lähdesmäki:
LuxUS: DNA methylation analysis using generalized linear mixed model with spatial correlation. Bioinform. 36(17): 4535-4543 (2020) - [j32]Maria Osmala, Harri Lähdesmäki:
Enhancer prediction in the human genome by probabilistic modelling of the chromatin feature patterns. BMC Bioinform. 21(1): 317 (2020) - [c10]Viivi Halla-aho, Harri Lähdesmäki:
LuxHS: DNA Methylation Analysis with Spatially Varying Correlation Structure. IWBBIO 2020: 505-516 - [i9]Valerii Iakovlev, Markus Heinonen, Harri Lähdesmäki:
Learning continuous-time PDEs from sparse data with graph neural networks. CoRR abs/2006.08956 (2020) - [i8]Siddharth Ramchandran, Gleb Tikhonov, Miika Koskinen, Harri Lähdesmäki:
Longitudinal Variational Autoencoder. CoRR abs/2006.09763 (2020) - [i7]Charles W. L. Gadd, Markus Heinonen, Harri Lähdesmäki, Samuel Kaski:
Sample-efficient reinforcement learning using deep Gaussian processes. CoRR abs/2011.01226 (2020)
2010 – 2019
- 2019
- [j31]Markus Heinonen, Maria Osmala, Henrik Mannerström, Janne Wallenius, Samuel Kaski, Juho Rousu, Harri Lähdesmäki:
Bayesian metabolic flux analysis reveals intracellular flux couplings. Bioinform. 35(14): i548-i557 (2019) - [j30]Juho Timonen, Henrik Mannerström, Harri Lähdesmäki, Jukka Intosalmi:
A Probabilistic Framework for Molecular Network Structure Inference by Means of Mechanistic Modeling. IEEE ACM Trans. Comput. Biol. Bioinform. 16(6): 1843-1854 (2019) - [c9]Pashupati Hegde, Markus Heinonen, Harri Lähdesmäki, Samuel Kaski:
Deep learning with differential Gaussian process flows. AISTATS 2019: 1812-1821 - [c8]Kari Nousiainen, Jukka Intosalmi, Harri Lähdesmäki:
A Mathematical Model for Enhancer Activation Kinetics During Cell Differentiation. AlCoB 2019: 191-202 - [c7]Çagatay Yildiz, Markus Heinonen, Harri Lähdesmäki:
ODE2VAE: Deep generative second order ODEs with Bayesian neural networks. NeurIPS 2019: 13412-13421 - [i6]Çagatay Yildiz, Markus Heinonen, Harri Lähdesmäki:
ODE$^2$VAE: Deep generative second order ODEs with Bayesian neural networks. CoRR abs/1905.10994 (2019) - [i5]Siddharth Ramchandran, Miika Koskinen, Harri Lähdesmäki:
Latent Gaussian process with composite likelihoods for data-driven disease stratification. CoRR abs/1909.01614 (2019) - [i4]Juho Timonen, Henrik Mannerström, Aki Vehtari, Harri Lähdesmäki:
An interpretable probabilistic machine learning method for heterogeneous longitudinal studies. CoRR abs/1912.03549 (2019) - 2018
- [j29]Emmi Jokinen, Markus Heinonen, Harri Lähdesmäki:
mGPfusion: predicting protein stability changes with Gaussian process kernel learning and data fusion. Bioinform. 34(13): i274-i283 (2018) - [j28]Kari Nousiainen, Kartiek Kanduri, Isis Ricaño-Ponce, Cisca Wijmenga, Riitta Lahesmaa, Vinod Kumar, Harri Lähdesmäki:
snpEnrichR: analyzing co-localization of SNPs and their proxies in genomic regions. Bioinform. 34(23): 4112-4114 (2018) - [c6]Markus Heinonen, Çagatay Yildiz, Henrik Mannerström, Jukka Intosalmi, Harri Lähdesmäki:
Learning unknown ODE models with Gaussian processes. ICML 2018: 1964-1973 - [c5]Çagatay Yildiz, Markus Heinonen, Jukka Intosalmi, Henrik Mannerström, Harri Lähdesmäki:
Learning stochastic differential equations with Gaussian Processes without Gradient Matching. MLSP 2018: 1-6 - [i3]Markus Heinonen, Maria Osmala, Henrik Mannerström, Janne Wallenius, Samuel Kaski, Juho Rousu, Harri Lähdesmäki:
Bayesian Metabolic Flux Analysis reveals intracellular flux couplings. CoRR abs/1804.06673 (2018) - [i2]Çagatay Yildiz, Markus Heinonen, Jukka Intosalmi, Henrik Mannerström, Harri Lähdesmäki:
Learning Stochastic Differential Equations With Gaussian Processes Without Gradient Matching. CoRR abs/1807.05748 (2018) - [i1]Pashupati Hegde, Markus Heinonen, Harri Lähdesmäki, Samuel Kaski:
Deep learning with differential Gaussian process flows. CoRR abs/1810.04066 (2018) - 2016
- [j27]Jukka Intosalmi, Kari Nousiainen, Helena Ahlfors, Harri Lähdesmäki:
Data-driven mechanistic analysis method to reveal dynamically evolving regulatory networks. Bioinform. 32(12): 288-296 (2016) - [j26]Tarmo Äijö, Xiaojing Yue, Anjana Rao, Harri Lähdesmäki:
LuxGLM: a probabilistic covariate model for quantification of DNA methylation modifications with complex experimental designs. Bioinform. 32(17): 511-519 (2016) - [j25]Yat Hin Chan, Jukka Intosalmi, Sini Rautio, Harri Lähdesmäki:
A subpopulation model to analyze heterogeneous cell differentiation dynamics. Bioinform. 32(21): 3306-3313 (2016) - [j24]Aalt D. J. van Dijk, Harri Lähdesmäki, Dick de Ridder, Juho Rousu:
Selected proceedings of Machine Learning in Systems Biology: MLSB 2016. BMC Bioinform. 17(S-16): 51-52 (2016) - [c4]Markus Heinonen, Henrik Mannerström, Juho Rousu, Samuel Kaski, Harri Lähdesmäki:
Non-Stationary Gaussian Process Regression with Hamiltonian Monte Carlo. AISTATS 2016: 732-740 - 2015
- [j23]Juhani Kähärä, Harri Lähdesmäki:
BinDNase: a discriminatory approach for transcription factor binding prediction using DNase I hypersensitivity data. Bioinform. 31(17): 2852-2859 (2015) - [j22]Sini Rautio, Harri Lähdesmäki:
MixChIP: a probabilistic method for cell type specific protein-DNA binding analysis. BMC Bioinform. 16: 413:1-413:12 (2015) - [j21]Jukka Intosalmi, Helena Ahlfors, Sini Rautio, Henrik Mannerström, Zhi Jane Chen, Riitta Lahesmaa, Brigitta Stockinger, Harri Lähdesmäki:
Analyzing Th17 cell differentiation dynamics using a novel integrative modeling framework for time-course RNA sequencing data. BMC Syst. Biol. 9: 81 (2015) - [j20]Antti Larjo, Harri Lähdesmäki:
Using multi-step proposal distribution for improved MCMC convergence in Bayesian network structure learning. EURASIP J. Bioinform. Syst. Biol. 2015: 6 (2015) - [j19]Tommi Vatanen, Maria Osmala, Tapani Raiko, Krista Lagus, Marko Sysi-Aho, Matej Oresic, Timo Honkela, Harri Lähdesmäki:
Self-organization and missing values in SOM and GTM. Neurocomputing 147: 60-70 (2015) - 2014
- [j18]Kirsti Laurila, Reija Autio, Lingjia Kong, Elisa Närvä, Samer Hussein, Timo Otonkoski, Riitta Lahesmaa, Harri Lähdesmäki:
Integrative genomics and transcriptomics analysis of human embryonic and induced pluripotent stem cells. BioData Min. 7: 32 (2014) - [j17]Tarmo Äijö, Vincent Butty, Zhi Jane Chen, Verna Salo, Subhash Tripathi, Christopher B. Burge, Riitta Lahesmaa, Harri Lähdesmäki:
Methods for time series analysis of RNA-seq data with application to human Th17 cell differentiation. Bioinform. 30(12): 113-120 (2014) - 2013
- [j16]Tarmo Äijö, Kirsi Granberg, Harri Lähdesmäki:
Sorad: a systems biology approach to predict and modulate dynamic signaling pathway response from phosphoproteome time-course measurements. Bioinform. 29(10): 1283-1291 (2013) - [j15]Juhani Kähärä, Harri Lähdesmäki:
Evaluating a linear k-mer model for protein-DNA interactions using high-throughput SELEX data. BMC Bioinform. 14(S-10): S2 (2013) - [c3]Antti Larjo, Harri Lähdesmäki:
Active learning for Bayesian network models of biological networks using structure priors. GENSiPS 2013: 78-81 - 2010
- [j14]Timo Erkkilä, Saara Lehmusvaara, Pekka Ruusuvuori, Tapio Visakorpi, Ilya Shmulevich, Harri Lähdesmäki:
Probabilistic analysis of gene expression measurements from heterogeneous tissues. Bioinform. 26(20): 2571-2577 (2010) - [j13]Xiaofeng Dai, Olli Yli-Harja, Harri Lähdesmäki:
Novel Data Fusion Method and Exploration of Multiple Information Sources for Transcription Factor Target Gene Prediction. EURASIP J. Adv. Signal Process. 2010 (2010)
2000 – 2009
- 2009
- [j12]Tarmo Äijö, Harri Lähdesmäki:
Learning gene regulatory networks from gene expression measurements using non-parametric molecular kinetics. Bioinform. 25(22): 2937-2944 (2009) - [j11]Xiaofeng Dai, Timo Erkkilä, Olli Yli-Harja, Harri Lähdesmäki:
A joint finite mixture model for clustering genes from independent Gaussian and beta distributed data. BMC Bioinform. 10 (2009) - [j10]Kirsti Laurila, Harri Lähdesmäki:
Systematic Analysis of Disease-Related Regulatory Mutation Classes Reveals Distinct Effects on Transcription Factor Binding. Silico Biol. 9(4): 209-224 (2009) - 2008
- [j9]Wenbin Liu, Harri Lähdesmäki, Edward R. Dougherty, Ilya Shmulevich:
Inference of Boolean Networks Using Sensitivity Regularization. EURASIP J. Bioinform. Syst. Biol. 2008 (2008) - [j8]Harri Lähdesmäki, Ilya Shmulevich:
Learning the structure of dynamic Bayesian networks from time series and steady state measurements. Mach. Learn. 71(2-3): 185-217 (2008) - [c2]Xiaofeng Dai, Harri Lähdesmäki, Olli Yli-Harja:
sBGMM: A Stratified Beta-Gaussian Mixture Model for Clustering Genes with Multiple Data Sources. BIOTECHNO 2008: 94-99 - 2007
- [j7]Miika Ahdesmäki, Harri Lähdesmäki, Andrew Gracey, Ilya Shmulevich, Olli Yli-Harja:
Robust regression for periodicity detection in non-uniformly sampled time-course gene expression data. BMC Bioinform. 8 (2007) - 2006
- [j6]Harri Lähdesmäki, Sampsa Hautaniemi, Ilya Shmulevich, Olli Yli-Harja:
Relationships between probabilistic Boolean networks and dynamic Bayesian networks as models of gene regulatory networks. Signal Process. 86(4): 814-834 (2006) - 2005
- [b1]Harri Lähdesmäki:
Computational methods for systems biology: analysis of high-throughput measurements and modeling of genetic regulatory networks. University of Tampere, Finland, 2005 - [j5]Harri Lähdesmäki, Ilya Shmulevich, Valerie Dunmire, Olli Yli-Harja, Wei Zhang:
In silico microdissection of microarray data from heterogeneous cell populations. BMC Bioinform. 6: 54 (2005) - [j4]Miika Ahdesmäki, Harri Lähdesmäki, Ronald K. Pearson, Heikki Huttunen, Olli Yli-Harja:
Robust detection of periodic time series measured from biological systems. BMC Bioinform. 6: 117 (2005) - 2004
- [j3]Ilya Shmulevich, Harri Lähdesmäki, Karen O. Egiazarian:
Spectral methods for testing membership in certain post classes and the class of forcing functions. IEEE Signal Process. Lett. 11(2): 289-292 (2004) - 2003
- [j2]Harri Lähdesmäki, Ilya Shmulevich, Olli Yli-Harja:
On Learning Gene Regulatory Networks Under the Boolean Network Model. Mach. Learn. 52(1-2): 147-167 (2003) - [j1]Harri Lähdesmäki, Heikki Huttunen, Tommi Aho, Marja-Leena Linne, Jari Niemi, Juha Kesseli, Ronald K. Pearson, Olli Yli-Harja:
Estimation and inversion of the effects of cell population asynchrony in gene expression time-series. Signal Process. 83(4): 835-858 (2003) - [c1]Ronald K. Pearson, Harri Lähdesmäki, Heikki Huttunen, Olli Yli-Harja:
Detecting Periodicity in Nonideal Datasets. SDM 2003: 274-278
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-18 19:31 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint