Computer Science > Machine Learning
[Submitted on 19 Sep 2024]
Title:SeqRisk: Transformer-augmented latent variable model for improved survival prediction with longitudinal data
View PDF HTML (experimental)Abstract:In healthcare, risk assessment of different patient outcomes has for long time been based on survival analysis, i.e.\ modeling time-to-event associations. However, conventional approaches rely on data from a single time-point, making them suboptimal for fully leveraging longitudinal patient history and capturing temporal regularities. Focusing on clinical real-world data and acknowledging its challenges, we utilize latent variable models to effectively handle irregular, noisy, and sparsely observed longitudinal data. We propose SeqRisk, a method that combines variational autoencoder (VAE) or longitudinal VAE (LVAE) with a transformer encoder and Cox proportional hazards module for risk prediction. SeqRisk captures long-range interactions, improves patient trajectory representations, enhances predictive accuracy and generalizability, as well as provides partial explainability for sample population characteristics in attempts to identify high-risk patients. We demonstrate that SeqRisk performs competitively compared to existing approaches on both simulated and real-world datasets.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.