何の話かというと TensorFlow Tutorialの最初に登場する「MNIST For ML Beginners」では、次の方針で手書き文字の分類器を作成しています。(今の段階では、下記が何を言ってるのか分からなくても大丈夫です。) ・28x28ピクセルの手書き文字画像を各ピクセルの濃度を並べた784次元ベクトルと見なす。 ・784次元ベクトル空間を10箇所に分類する線形の多項分類器を用意する。 ・多項分類器の出力値をsoftmax関数に入れて、784次元空間の各点について、「0」〜「9」のそれぞれの文字である確率を定義する。 ・上記の定義の下で、トレーニングセットが得られる確率を最大にするよう、線形多項分類器のパラメーターを調整する。 これが一体何を言ってるのか・・・ということを数学的に理解していただくことが目標です。今回は、下準備として、より単純化したデータで上記と同じ処理を実装