[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

タグ

Hadoopに関するrokujyouhitomaのブックマーク (30)

  • ヤフーを変え始めたHadoop

    ヤフーが日独自の検索関連サービスの開発で、オープンソースの分散処理ソフトである「Hadoop」の活用を進めている。Hadoopを使うことで、従来は6時間以上かかった処理がわずか5分半で済むようになった例もある。2009年秋には組織を整備し、適用範囲を全社に広げている。 Hadoopは、米グーグルが開発した分散処理ソフト「Google File System(GFS)」と「MapReduce」を模したオープンソースソフトである(図)。GFSとMapReduceは、グーグルのクラウドを支える基盤技術。Hadoopを使うと、複数台の安価なPCサーバーを連携させ、数十テラ~数ペタバイトに及ぶデ ータを高速に処理できる。 Hadoopを日国内で最も積極的に利用している企業はヤフーだ。2008年ごろから部署単位でHadoopの導入を進め、Hadoopを使う事例が10件を超えるようになった(表)。

    ヤフーを変え始めたHadoop
  • Hadoop を使うべき場合・使うべきでない場合 - 武蔵野日記

    id:ny23 さんが動的ダブル配列を使って Wikipedia のテキスト処理を高速化なんてのを書いている。たぶんこれのエントリを見る前にMapReduce と四身の拳を見た方がコンテクストが分かると思う。Hadoop 使ってなんでもできそう! Hadoop の勉強したい!なんて思っている人は読んでみるとよい。 自分の考えについて書いておくと、自分は誰も彼も Hadoop 使いたがる状況には辟易している。ほとんどの人には不要なはずだし、そもそも Hadoop は(ny23 さんも書かれているが)メモリに乗り切らない大規模データを扱いたいときに効力を発揮するのであって、メモリに乗り切るくらいのサイズであれば、データ構造を工夫したり適切なアルゴリズムを選択した方が遥かによい(id:tsubosaka さんも実験されていたが)。たとえデータが大規模であったとしても、たとえば形態素解析なんかのタ

    Hadoop を使うべき場合・使うべきでない場合 - 武蔵野日記
  • 大量データのバッチ処理を高速化するHadoop

    Hadoopというソフトウエアが、いま注目を集めています。米Googleが発表した論文のアイディアをオープンソース・モデルで実装したソフトウエアです。膨大な量のデータを処理する必要に迫られた企業や研究組織が、続々とHadoopを実際に活用しはじめています。 私たちの研究グループでは、Wikipediaなどの巨大なテキスト・データを解析するために、2007年頃からHadoopを利用しはじめましたが、日国内でも2009年あたりからHadoopを使った事例を多く見聞きするようになりました。国内で初めてのHadoop関連イベントが2009年11月に東京で開催され、オライリー・ジャパンから2010年1月にHadoopの邦訳が出版されるなど、Hadoopが多くの開発者の注目を浴びています。 しかしながら、「Hadoopは何となくすごそうなんだけど、複雑だし、どんなソフトなのかいまいち分からないんだ

  • スタンドアローンモードではなく、複数台のサーバーで動かす - yasuhisa's blog

    一台ではえらく簡単だったんだけど 複数台では結構つまづいた できたけどうまく理解できていない できたけど、もっと効率よくできるんじゃないか などなどあったので記録を取っておく。 複数台のサーバーで(mapとかreduceを)動かすための鍵になるコマンドがあって、それはhadoop dfs。一台で動かしていると(たぶん)使わないコマンド。map&reduceするためのRuby(orその他のスクリプト)をhadoopで動かしたいサーバーに浸透させないといけない。scpなどのコマンドを使って、全てのサーバーにコピー...とかをやるわけではなく(同期とかを考えるとめんどくさそう...)、hadoopがその付近をやってくれるらしい。ついでに言うと、普通のファイルシステム上にコピーとかをしているわけではなく、hadoop上のファイルシステム上にコピーをするようです。そういうわけで「ファイルちゃんと置い

  • Hadoop では Sun JDK 1.6.0_18 は使用できません

    rokujyouhitoma
    rokujyouhitoma 2010/05/26
    SunJDK1.6.0_18ではHadoopがクラッシュするとの噂を(ry
  • Hadoopを表計算のように使える「InfoSphere BigInsights」、IBMが発表

    IBMがHadoopをベースにしたデータ分析ソフトウェア「InfoSphere BigInsights」を、先週ローマで開催された同社のイベント「IBM Information On Demand Europe 2010」で発表しました。 InfoSphere BigInsightsは、Apache Hadoopをベースにした分析エンジンの「BigInsights Core」と、その上で大規模データをWebブラウザを利用してスプレッドシートのようなユーザーインターフェイスで分析を行える「BigSheets」の2つから構成されます。 BigSheetsで表計算のようにデータ分析 BigInsights CoreのベースとなっているHadoopは、数百万件など大規模なデータを大量のサーバで分散処理するためのオープンソースのソフトウェアです。Yahoo!やFacebook、日ではCookpad

    Hadoopを表計算のように使える「InfoSphere BigInsights」、IBMが発表
  • Hadoop で Wikipedia のテキスト処理を900倍高速化 - 武蔵野日記

    今月中に実験の実装が終わるくらいでないと来月の投稿〆切に間に合わないので、今週から研究室のサーバに Hadoop をインストールしている。 研究室にはサーバが20台弱あるのだが、そのうち10台強を使うことにして設定。これくらいの規模だと「大規模」と言うのは憚られるかもしれないが(Yahoo!Google と比べて、という意味で。)、中規模、くらいには言ってもいいだろうし、たぶん、多くの大学や企業で使える台数もこれくらいだと思うし、大企業にいないとできない研究をするのも大変価値があるが、他の人たちがやる気になれば真似できる研究をするのも(データやインフラ勝負ではなくアイデア勝負になるので苦しくはあるのだが)重要だと考えている。 たとえば、数台でも分散環境の恩恵が受けられる、というのはPFI が出した Hadoop の解析資料で知っていたので、初めて導入したときは参考になったし、こういう

    Hadoop で Wikipedia のテキスト処理を900倍高速化 - 武蔵野日記
  • liris.org - このウェブサイトは販売用です! - liris リソースおよび情報

    This webpage was generated by the domain owner using Sedo Domain Parking. Disclaimer: Sedo maintains no relationship with third party advertisers. Reference to any specific service or trade mark is not controlled by Sedo nor does it constitute or imply its association, endorsement or recommendation.

    liris.org - このウェブサイトは販売用です! - liris リソースおよび情報
    rokujyouhitoma
    rokujyouhitoma 2010/02/20
    hadoopをPythonから使う。
  • 優良企業はなぜHadoopに走るのか

    ちなみに、この分析のために必要とされるMapReduceのコードであるが、そのサイズはわずか20ステップだという。Yahoo!のプレゼンテーターである、エリック・バルデシュバイラー氏によると、たとえ経験の浅いエンジニアであっても、MapReduceによるプログラミングは可能であるとされる。 また、VISAのジョー・カニンガム氏からも、貴重なデータが提供されていたので以下に紹介する。同社では、1日に1億トランザクションが発生するため、2年間で700億強のトランザクションログが蓄積され、そのデータ量は36テラバイトに至るという。こうしたスケールのデータを、従来のRDBを用いて分析するには、約1カ月の時間が必要とされてきたが、Hadoopを用いることで13分に短縮されたという。 これまでは、Yahoo!にしろVISAにしろ、膨大なデータをRDBに押し込むほかに方法はなく、その分析に数十日を要する

    優良企業はなぜHadoopに走るのか
  • Apache Hadoop - Wikipedia

    Apache Hadoopは大規模データの分散処理を支えるオープンソースのソフトウェアフレームワークであり、Javaで書かれている。Hadoopはアプリケーションが数千ノードおよびペタバイト級のデータを処理することを可能としている。HadoopはGoogleMapReduceおよびGoogle File System(GFS)論文に触発されたものである。 HadoopはApacheのトップレベルプロジェクトの1つであり、世界規模の開発貢献者コミュニティによって開発され、使用されている。[2] Hadoopは、以下の4つのモジュールによって構成されている。 Hadoop Common: 他のモジュールから共通して利用されるライブラリ群。 Hadoop Distributed File System (HDFS): Hadoop独自の分散ファイルシステム。 Hadoop YARN: Hado