[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

タグ

hadoopに関するmakotoworldのブックマーク (11)

  • Facebookが新サービスの基盤にしたのは、MySQLでもCassandraでもなく、HBaseだった

    Facebookが15日に発表した新しいサービス「Facebook Messages」は、チャットやつぶやき、そして電子メールなど、自分宛のテキストやメッセージをすべて1つのインボックスで管理できると発表されました。 同社が15カ月かけて開発してきたこの新サービスのバックエンドデータベースは、これまで同社が大規模運用してきたMySQLでも、同社が開発したNoSQLデータベースのCassandraでもなく、グーグルのBigTableをモデルとしてオープンソースで開発された分散データベース「HBase」でした。 Facebookのソフトウェアエンジニア、Kannan Muthukkaruppan氏がFacebookにポストした記事「The Underlying Technology of Messages」で、その技術的背景が紹介されています。 MySQLとCassandraが落選した理由 H

    Facebookが新サービスの基盤にしたのは、MySQLでもCassandraでもなく、HBaseだった
  • Hadoopは借りて使え - masayang's diary

    NTTデータが公開したHadoop資料が話題になっている。ざっと読む限り、コード事例もあって参考になることは確か。読まない手はないだろう。 だけど、Hadoop環境を自前で構築することには私はあまり賛同できない。技術屋が勉強するため、というのなら話は別だけど、事業でHadoopを使うのならクラウド上のを借りることをお勧めする。 例えば1000台のクラスタを構築して、デイリーバッチ処理が5分で終わるようになった! と喜ぶのも良いだろう。でも、残りの23時間55分はそのクラスタどうするのか?寝かせておくのであればROI評価は非常に低いものになるだろう。 かといってケチって5台のクラスタにしたらほぼ1日中稼動したのでROIは高くなりましたが処理時間短縮には至りませんでした、なんていうのも馬鹿げている。 じゃ、どこに最適点があるのか? 答は「自前で持たず、必要なときに必要な台数のクラスタを借りる」

    Hadoopは借りて使え - masayang's diary
  • NTTデータのHadoop報告書がすごかった - 科学と非科学の迷宮

    業界トップ のエンタープライズ Hadoop 企業 Cloudera に入社しました http://www.cloudera.co.jp/ 今年の6月に、「平成21年度 産学連携ソフトウェア工学実践事業報告書」というドキュメント群が経産省から公表されました。 そのうちの一つに、NTTデータに委託されたHadoopに関する実証実験の報告書がありましたので、今更ながら読んでみることにしました。 Hadoop界隈の人はもうみんなとっくに読んでるのかもしれませんけど。 http://www.meti.go.jp/policy/mono_info_service/joho/downloadfiles/2010software_research/clou_dist_software.pdf 「高信頼クラウド実現用ソフトウェア開発(分散制御処理技術等に係るデータセンター高信頼化に向けた実証事業)」という

    NTTデータのHadoop報告書がすごかった - 科学と非科学の迷宮
  • 勉強会発表「プログラマのためのHadoop入門」 - 科学と非科学の迷宮

    id:kaigai の主催する勉強会で発表してきました。 Hadoop for programmerView more presentations from shiumachi. 答えられなかった質問 Shuffleフェーズって、ソートをどういう仕組みでやってるの? データ全部をなめてるの? Partitionerというクラスでデータを振り分けてる。タスクごとは独立してるのでデータをまたがってアクセスすることはないと思う。でも細かいことはちょっとわからない。 Map中にデータ追加したらどうなるのか? さすがに扱うデータは最初に決めていると思うが、やったことないのでわからない。 Streamingって具体的にどんな処理してるの? jarファイルは投げてるけど、実行時に使うスクリプトはどうやって投げてるのかわからない。 あとで調べときます。 今の世の中に出てるHadoopって構築とか運用の話

    勉強会発表「プログラマのためのHadoop入門」 - 科学と非科学の迷宮
  • マイクロソフトのHadoop対抗技術「Dryad」、いよいよ始動か?

    大規模分散処理のフレームワークとしてグーグルが開発したMapReduce処理や、そのオープンソース実装であるHadoopが急成長し、ビジネスの分野での商業利用が立ち上がり始めていることは、Publickeyでも何度か記事で紹介してきました。 Hadoopを表計算のように使える「InfoSphere BigInsights」、IBMが発表 グーグルによるMapReduceサービス「BigQuery」が登場。SQLライクな命令で大規模データ操作 Hadoopは企業のための新たな情報分析プラットフォームとなる、とCloudera グーグルがBigQueryの開始を発表し、IBMも大規模処理のエンジンとしてHadoopを採用、AmazonクラウドでもHadoop処理を行う「Amazon Elastic MapReduce」サービスを提供していることから分かるように、Hadoopはクラウドでの大規模

    マイクロソフトのHadoop対抗技術「Dryad」、いよいよ始動か?
  • Hadoopを使いこなす(1)

    まず、 1 の入力ファイルを分割する方法は、InputFormatクラスの、getSplits関数を上書きすることで、カスタマイズできます。 また、 3 のInputSplitから、KeyとValueを抽出する処理も、InputFormatクラスを通じてカスタマイズできます。 InputFormatのgetRecordReader関数を通じて、RecordReaderクラスを生成するのですが、これに任意のRecordReaderクラスを指定すればOKです。 2 のMap処理ですが、ユーザが指定したMapperクラスの処理を実行します。 Mapperクラスは、MapRunnerクラスを通じて、初期化処理、map関数を繰り返す過程、終了処理といった一連の流れを実行します。 MapRunnerクラスをカスタマイズすれば、こうした流れを制御することができます。 0.20.0からの新しいMapRed

    Hadoopを使いこなす(1)
  • KOF2009「ウェブサービスのパフォーマンスとスケーラビリティ」 - stanaka's blog

    KOF2009にて、「ウェブサービスのパフォーマンスとスケーラビリティ」と題して発表してきました。発表資料を以下に置いておきます。 Performance and Scalability of Web ServiceView more presentations from Shinji Tanaka. 概要は、「ウェブサービスのパフォーマンスを向上させスケーラビリティを高めるために、はてなでは様々な取組みを行っています。セッションでは、はてなで採用している具体的な技術、ノウハウ、可視化手法と、それらの効果について紹介します。」というものです。 最近の、Interopやカーネル読書会あたりで話した内容をまとめつつ、レスポンスタイムの可視化という最近の取り組みについて話しました。 最近、レスポンスタイムについては、以下のようなグラフを使っています。 x軸がレスポンス時間、y軸がその時間内に収

    KOF2009「ウェブサービスのパフォーマンスとスケーラビリティ」 - stanaka's blog
  • 大学で Hadoop 使う場面ってどんなのだろうか - 武蔵野日記

    今さらだが @kzk_mover くんによるHadoop World NYC 参加記の紹介。Hadoop って考え方は単純なのだけど、ドキュメントがものすごい勢いで陳腐化したり、チューニングしないといけないパラメータがたくさんあったり(デフォルトで適当な値に設定されているのだけど)、コンセプトはいいのだけど使うとなると手を出しづらい技術の筆頭格だと思う。Yahoo! の例だけ引用してみると、 Hadoop Applications at Yahoo! Yahooでの使用事例の話です。Yahooでは現在約25000台程度のノード上でHadoopが走っているようです。そのうちの約20%が番用、約60%がResearch目的という事でした。 ただ、Yahoo.comのトップページに表示されているコンテンツの裏では結構使われているようで、Ad Optimization, Search Index

    大学で Hadoop 使う場面ってどんなのだろうか - 武蔵野日記
  • Amazon Elastic MapReduceを使ってみた - moratorium

    Amazon Elastic MapReduceを使ってみた 2009-04-03 (Fri) 3:06 Amazon EC2 連日のEC2ネタです。日、AmazonからElastic MapReduceというサービスがリリースされました。大規模データ処理技術が一気に民間の手に下りてくる、まさに革命的なサービスだと思います。 Amazon Elastic MapReduce Amazon ElasticMapReduce 紹介ビデオ With Hadoop, Amazon Adds A Web-Scale Data Processing Engine To Its Cloud Computer by techcrunch.com Elastic MapReduceは、Googleの基盤技術の一つであるMapReduceを時間単位課金で実行できるサービスです。MapReduceについては以

  • 楽天版MapReduce・HadoopはRubyを活用 - @IT

    2008/12/01 楽天は11月29日、東京・品川の社で開催した技術系イベント「楽天テクノロジーカンファレンス2008」において、近い将来に同社のEコマースサービス「楽天市場」を支える計画があるRubyベースの大規模分散処理技術「ROMA」(ローマ)と「fairy」(フェアリー)について、その概要を明らかにした。 レコメンデーションの処理自体はシンプル 楽天市場では現在、2600万点の商品を取り扱い、4200万人の会員に対してサービスを提供している。この規模の会員数・商品点数でレコメンデーション(商品の推薦)を行うのは容易ではない。 ※記事初出時に楽天市場の会員数を4800万人としてありましたが、これは楽天グループのサービス利用者全体の数字でした。楽天市場の会員数は正しくは4200万人とのことです。お詫びして訂正いたします。 レコメンデーションの仕組みとして同社は、一般的でシンプルなア

  • Hadoopのインストールとサンプルプログラムの実行:CodeZine

    前回はGoogleの基盤技術とそれに対応するオープンソースソフトウェアとして、Hadoop & hBaseを紹介しました(図1 参照)。今回はHadoopを1台にインストールし、サンプルプログラムを動かします。次にHDFSとMapReduceのアーキテクチャを解説します。最後にサンプルプログラムのソースコードを解説します。2. Hadoopの概要 Hadoopは主にYahoo! Inc.のDoug Cutting氏によって開発が進められているオープンソースソフトウェアで、GoogleFileSystemMapReduceというGoogleの基盤技術のオープンソース実装です。Hadoopという名前は開発者の子供が持っている黄色い象のぬいぐるみの名前に由来しています。HadoopはHDFS(Hadoop Distributed File System)、Hadoop MapReduce Fr

  • 1