計算理論においてチューリング完全(チューリングかんぜん、英語: Turing-complete)あるいは計算完備とは、計算モデルが万能チューリングマシンと同じ計算能力をもっていることを指す。 チャーチ=チューリングのテーゼによれば「計算可能関数」は、それを計算しようとする計算モデルがチューリング完全であれば計算できる。 一般的なプログラミング言語の背景にある計算モデルの多くはチューリング完全である。一見単純な機能しか持たない言語がチューリング完全な例としては、Lazy K、Brainfuckなどがある。究極的に単純な計算モデルとしては「ウルフラムの2状態3記号チューリングマシン(英語版)がチューリング完全であると証明されている。 チューリング完全かどうかという事は、計算可能性理論の問題である。計算複雑性の分野の問題である時間や記憶容量の消費量については考えない。表計算における数式の処理など