本プログラムの最大の特徴の一つは、全てのトピックについて、演習を中心に構成されている点です。実際に手を動かしながら理解を進めることで、効率よく学習することができます。 実際にモデルを学習させながら技術を習得する本格的な演習内容となっています。Deep Learningは、モデルが実際に学習する様子を観測し、パラメータを調整することでアプリケーションに応じたパフォーマンス最大化を行うことが非常に重要な技術ですが、この一連の流れを全ての演習で経験しながら重要な要素を身につけることが可能です。
英語版はこちら。 TensorFlowの登場以降、OSSベースの機械学習の盛り上がりは加速しています。Kerasの作者のFrançois Cholletさんの言葉が、この状況を非常に端的に表しています。これだけでも十分だとは思いますが、この記事では、なぜオープンソースの機械学習が強いのか、最近のどういった流れがあるのかを整理したいと思います。 tl;dr機械学習やDeep Learningのフレームワークが充実してきた論文が査読前に公開され、他社も簡単にアルゴリズムの検証ができるようになった多くのプレーヤーの参戦により、アカデミアでの機械学習の研究がレッドオーシャン化した他社にないアルゴリズムで一発勝負、実装は秘密、というアプローチが厳しい牧歌的な時代5年前10年前の世界では、先端の機械学習に取り組んでいるのは大学などの研究室、大企業の研究所や一部の先進的な企業がほとんどでした。特に、ラベ
はじめまして。 本業はアスキーアート (以下AA) 職人のOsciiArtといいます (本業ではない)。 AlphaGo対イ・セドルの対局を見て、「僕もディープラーニングで神AA職人を倒したい!」と思い、pythonをインストールしてちょうど一年の成果を書いていきます。 コードはこちらにアップしてあります。 https://github.com/OsciiArt/DeepAA ここで扱うアスキーアートとは ここで扱うAAとは、 こういうの……↓ ではなく、こういうの……↓ でもなく、こういうの……↓ ともちょっと違って、こういうの……↓ ではもちろんなく、こういうのです。↓ このような、線画を文字を作って再現した「トレースAA」と呼ばれるタイプのAAをここでは扱います。 詳細はwikipediaの「アスキーアート」のページの「プロポーショナルフォント」の項を参照してください。 wikipe
デープラーニングはコモディティ化していてハンダ付けの方が付加価値高いといわれるピ-FNで主に工作担当のtai2anです。 NHKで全国放送されたAmazon Picking Challengeでガムテべったべたのハンドやロボコン感満載の滑り台とかを工作してました。 とはいえ、やっぱりちょっとディープラーニングしてみたいので1,2か月前からchainerを勉強し始めました。 せっかくなので線画の着色をしたいなーと思って色々試してみました。 線画の着色は教師あり学習なので線画と着色済みの画像のデータセットが(できれば大量に)必要です。 今回はOpenCVでカラーの画像から線画を適当に抽出しています。 抽出例 → カラーの画像を集めて線画を作ればデータセットの完成です。(今回は60万枚くらい使っています) ネットワークの形ですが、U-netという最初の方でコンボリューションする時の層の出
この記事はトレタ Advent Calendar 2016の22日目です。 21日目はswdhの ActiveRecordオブジェクトを関連ごとシリアライズしてデシリアライズするでした。 スナップショット的にその時点のモデルを関連モデル含めて保存したい、っていう要望はBtoBやってると結構遭遇しますね。テーブルをちゃんと正規化すればするほど難しくなるやつなのでgem化されてるとありがたいです。 さて、この記事ではゼロから作るDeep Learning ―Pythonで学ぶディープラーニングの理論と実装を読んでpythonに入門するところから初めてニューラルネットワークを実際に実装して見た所感を記述します。平たく言えば読書感想文です。 ゼロから作るDeep Learning ―Pythonで学ぶディープラーニングの理論と実装 作者: 斎藤康毅出版社/メーカー: オライリージャパン発売日: 2
Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? Deep Learning Advent Calendar 2016の20日目の記事です。 ConvNetの歴史とResNet亜種、ベストプラクティスに関連スライドがあります(追記) 背景 府大生が趣味で世界一の認識精度を持つニューラルネットワークを開発してしまったようです。 M2の学生が趣味でやっていたCIFAR10とCIFAR100の認識タスクで,現時点での世界最高性能の結果を出したそうだ…趣味でっていうのが…https://t.co/HKFLXTMbzx — ニーシェス (@lachesis1120) 2016年12月7日 府
データサイエンティストの中村です。VASILYではファッションに特化した画像解析エンジンを開発しています。本記事では、スナップ写真からファッションアイテムを検出するシステムを紹介したいと思います。 概要 このシステムの入力はスナップ写真です。スナップ写真が入力されたとき、システムは以下のタスクを解きます。 写真中からファッションアイテムに該当する領域を検出する 検出したファッションアイテムのカテゴリを予測する 検出したファッションアイテムに似ているアイテムをDBから検索する 各タスクを解く方法は様々ありますが、弊社のシステムでは2種類のネットワークを使ってこれを達成しています。 ファッションアイテムの検出とカテゴリ予測 検出は画像認識の基本的なタスクで盛んに研究されていて様々な手法が提案されていますが、今回はSingle Shot MultiBox Detector (SSD)*1 と呼ば
この記事ははてなデベロッパーアドベントカレンダーを始めます - Hatena Developer Blogの最終日の記事です。昨日は id:ichirin2501 の MySQLでINSERTのデッドロックに嵌る人を1人でも減らすために - ichirin2501's diary でした。 こんにちは、id:stanaka / @stanaka です。今年のはてなデベロッパーアドベントカレンダーも最終日です。 2015年もSwiftのOSS化から、JavaScriptでデスクトップアプリを書けるElectronや、 Chainer, TensorflowなどのDeep Learningライブラリ、AWS RDSのAuroraの東京リージョンでのリリースなどなど、 大小様々な技術が登場しました。 はてな社内でも新しい技術の採用方針については時々議論になるのですが、 社内向けに書いた技術選択を
(この記事はGoogle Cloud Platform Advent Calendar 2015の12月3日分の記事です) Cloud Vision APIと私 Googleに入ってからまもなく5年、Google Cloud Platformのデベロッパーアドボケイト(エバンジェリストみたいな役割)の仕事に就いてから1年が経ちました。仕事の半分はアジア地域向けの開発者コミュニティ支援で、残り半分はGCPの新製品ローンチの支援をグローバル向けに行っています。 特にここ半年は、TensorFlowをはじめ、GCPの機械学習系プロダクトのローンチ支援にフォーカスしています。TensorFlowはその序章で、公開前からAlphaカスタマー向けのスライドを作ったり説明やデモしたりしていました。 そうしたGCPの新しい機械学習系サービスのひとつが、Cloud Vision APIです。これはGoogl
Deep Neural Networkを使って画像を好きな画風に変換できるプログラムをChainerで実装し、公開しました。 https://github.com/mattya/chainer-gogh こんにちは、PFNリサーチャーの松元です。ブログの1行目はbotに持って行かれやすいので、3行目で挨拶してみました。 今回実装したのは”A Neural Algorithm of Artistic Style”(元論文)というアルゴリズムです。生成される画像の美しさと、画像認識のタスクで予め訓練したニューラルネットをそのまま流用できるというお手軽さから、世界中で話題になっています。このアルゴリズムの仕組みなどを説明したいと思います。 概要 2枚の画像を入力します。片方を「コンテンツ画像」、もう片方を「スタイル画像」としましょう。 このプログラムは、コンテンツ画像に書かれた物体の配置をそのま
ディープラーニングを小学生でも使えるようにしてみる Trial to make easy to use deep learned neural network 2015.06.30 Updated by Ryo Shimizu on June 30, 2015, 06:59 am JST この一ヶ月で、ディープラーニングが急激に使いやすくなってきています。 Google傘下のディープラーニング研究グループDeep Mindでインターンをしているスタンフォード大学の学生はこんな台詞をツイートしています。 「ディープラーニングに関して、新しくクールな論文が発表される速度は、それを読める速度より速い」 それこそ毎日のようにディープラーニングに関する何らかの新しい話題が出てきます。 それくらい、ディープラーニングは盛り上がっているのです。 「人工知能は人間を超えるか」を記した東京大学の松尾豊先生に
Preferred Infrastructure(以下PFI)からスピンオフした会社、Preferred NetworksのリリースしたDeepLearningライブラリのChainerがすごい、と話題になっています。*1 解説 Deep Learning のフレームワーク Chainer を公開しました | Preferred Research 公式 Chainer: A flexible framework of neural networks GitHub pfnet/chainer · GitHub ドキュメント Chainer – A flexible framework of neural networks — Chainer 1.1.0 documentation おそらく初露出 ディープラーニング最近の発展とビジネス応用への課題 公式ツイッター chainer (@Chai
2. 目次 • Deep Learning とは" – 機械学習について" – 従来の NN とのちがい" – Deep Learning のブレイクスルー" • dA (Denoising Autoencoders) をうごかす" – 数理モデルの解説" – Python で実装する前準備" – コードレビュー" – 実行結果" • RBM (Restricted Boltzmann Machines) をうごかす" – 数理モデルの解説" – 実行結果" • まとめ 4. Deep Learning とは • 入力信号からより抽象的な概念を学ぶ・特徴を抽出する 機械学習の手法の集合です " “ニューラルネットとどう違うの?”! • ニューラルネットを多層にしたんです " “従来のニューラルネットワークと何が違うの?”! • ひとつひとつのレイヤー間でパラ
うまくできましたか? ボヤけたり、ギザギザになったりしませんでしたか? waifu2xをお試しください。 (ブラウザの処理に影響されないようクリックで拡大おねがいします) waifu2xは、二次元画像を2倍に拡大するソフトウェアです。多くの二次元画像についてスゴイ級のクオリティで拡大できます。 waifu2xは、最新鋭の人工知能技術 Deep Convolutional Neural Networks を使って開発されました。 waifu2xの人工知能は、次の問に答えます。 いまから与える画像はある画像を半分に縮小したものである。縮小される前の画像を求めよ。 画像を拡大するのではなく、縮小される前の状態に戻します。 縮小されてないオリジナル画像を与えた場合も、やはり縮小される前の画像を答えます。 その画像は本来存在しないものですが、waifu2xはそれを想像で創ります。 二次元画像のJPE
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く