本プログラムの最大の特徴の一つは、全てのトピックについて、演習を中心に構成されている点です。実際に手を動かしながら理解を進めることで、効率よく学習することができます。 実際にモデルを学習させながら技術を習得する本格的な演習内容となっています。Deep Learningは、モデルが実際に学習する様子を観測し、パラメータを調整することでアプリケーションに応じたパフォーマンス最大化を行うことが非常に重要な技術ですが、この一連の流れを全ての演習で経験しながら重要な要素を身につけることが可能です。
英語版はこちら。 TensorFlowの登場以降、OSSベースの機械学習の盛り上がりは加速しています。Kerasの作者のFrançois Cholletさんの言葉が、この状況を非常に端的に表しています。これだけでも十分だとは思いますが、この記事では、なぜオープンソースの機械学習が強いのか、最近のどういった流れがあるのかを整理したいと思います。 tl;dr機械学習やDeep Learningのフレームワークが充実してきた論文が査読前に公開され、他社も簡単にアルゴリズムの検証ができるようになった多くのプレーヤーの参戦により、アカデミアでの機械学習の研究がレッドオーシャン化した他社にないアルゴリズムで一発勝負、実装は秘密、というアプローチが厳しい牧歌的な時代5年前10年前の世界では、先端の機械学習に取り組んでいるのは大学などの研究室、大企業の研究所や一部の先進的な企業がほとんどでした。特に、ラベ
はじめまして。 本業はアスキーアート (以下AA) 職人のOsciiArtといいます (本業ではない)。 AlphaGo対イ・セドルの対局を見て、「僕もディープラーニングで神AA職人を倒したい!」と思い、pythonをインストールしてちょうど一年の成果を書いていきます。 コードはこちらにアップしてあります。 https://github.com/OsciiArt/DeepAA ここで扱うアスキーアートとは ここで扱うAAとは、 こういうの……↓ ではなく、こういうの……↓ でもなく、こういうの……↓ ともちょっと違って、こういうの……↓ ではもちろんなく、こういうのです。↓ このような、線画を文字を作って再現した「トレースAA」と呼ばれるタイプのAAをここでは扱います。 詳細はwikipediaの「アスキーアート」のページの「プロポーショナルフォント」の項を参照してください。 wikipe
デープラーニングはコモディティ化していてハンダ付けの方が付加価値高いといわれるピ-FNで主に工作担当のtai2anです。 NHKで全国放送されたAmazon Picking Challengeでガムテべったべたのハンドやロボコン感満載の滑り台とかを工作してました。 とはいえ、やっぱりちょっとディープラーニングしてみたいので1,2か月前からchainerを勉強し始めました。 せっかくなので線画の着色をしたいなーと思って色々試してみました。 線画の着色は教師あり学習なので線画と着色済みの画像のデータセットが(できれば大量に)必要です。 今回はOpenCVでカラーの画像から線画を適当に抽出しています。 抽出例 → カラーの画像を集めて線画を作ればデータセットの完成です。(今回は60万枚くらい使っています) ネットワークの形ですが、U-netという最初の方でコンボリューションする時の層の出
この記事はトレタ Advent Calendar 2016の22日目です。 21日目はswdhの ActiveRecordオブジェクトを関連ごとシリアライズしてデシリアライズするでした。 スナップショット的にその時点のモデルを関連モデル含めて保存したい、っていう要望はBtoBやってると結構遭遇しますね。テーブルをちゃんと正規化すればするほど難しくなるやつなのでgem化されてるとありがたいです。 さて、この記事ではゼロから作るDeep Learning ―Pythonで学ぶディープラーニングの理論と実装を読んでpythonに入門するところから初めてニューラルネットワークを実際に実装して見た所感を記述します。平たく言えば読書感想文です。 ゼロから作るDeep Learning ―Pythonで学ぶディープラーニングの理論と実装 作者: 斎藤康毅出版社/メーカー: オライリージャパン発売日: 2
Preferred Infrastructure(以下PFI)からスピンオフした会社、Preferred NetworksのリリースしたDeepLearningライブラリのChainerがすごい、と話題になっています。*1 解説 Deep Learning のフレームワーク Chainer を公開しました | Preferred Research 公式 Chainer: A flexible framework of neural networks GitHub pfnet/chainer · GitHub ドキュメント Chainer – A flexible framework of neural networks — Chainer 1.1.0 documentation おそらく初露出 ディープラーニング最近の発展とビジネス応用への課題 公式ツイッター chainer (@Chai
2. 目次 • Deep Learning とは" – 機械学習について" – 従来の NN とのちがい" – Deep Learning のブレイクスルー" • dA (Denoising Autoencoders) をうごかす" – 数理モデルの解説" – Python で実装する前準備" – コードレビュー" – 実行結果" • RBM (Restricted Boltzmann Machines) をうごかす" – 数理モデルの解説" – 実行結果" • まとめ 4. Deep Learning とは • 入力信号からより抽象的な概念を学ぶ・特徴を抽出する 機械学習の手法の集合です " “ニューラルネットとどう違うの?”! • ニューラルネットを多層にしたんです " “従来のニューラルネットワークと何が違うの?”! • ひとつひとつのレイヤー間でパラ
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く