@inproceedings{labruna-magnini-2024-towards,
title = "Towards Cost-effective Multi-style Conversations: A Pilot Study in Task-oriented Dialogue Generation",
author = "Labruna, Tiziano and
Magnini, Bernardo",
editor = "Calzolari, Nicoletta and
Kan, Min-Yen and
Hoste, Veronique and
Lenci, Alessandro and
Sakti, Sakriani and
Xue, Nianwen",
booktitle = "Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)",
month = may,
year = "2024",
address = "Torino, Italia",
publisher = "ELRA and ICCL",
url = "https://aclanthology.org/2024.lrec-main.1431/",
pages = "16473--16479",
abstract = "Conversations exhibit significant variation when different styles are employed by participants, often leading to subpar performance when a dialogue model is exclusively trained on single-style datasets. We present a cost-effective methodology for generating multi-style conversations, which can be used in the development of conversational agents. This methodology only assumes the availability of a conversational domain, such as a knowledge base, and leverages the generative capabilities of large language models. In a pilot study focused on the generation aspect of task-oriented dialogues, we extended the well-known MultiWOZ dataset to encompass multi-style variations. Our findings highlight two key experimental outcomes: (i) these novel resources pose challenges for current single-style models, and (ii) multi-style resources enhance the dialogue model`s resilience to stylistic variations."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="labruna-magnini-2024-towards">
<titleInfo>
<title>Towards Cost-effective Multi-style Conversations: A Pilot Study in Task-oriented Dialogue Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Tiziano</namePart>
<namePart type="family">Labruna</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bernardo</namePart>
<namePart type="family">Magnini</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min-Yen</namePart>
<namePart type="family">Kan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Veronique</namePart>
<namePart type="family">Hoste</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alessandro</namePart>
<namePart type="family">Lenci</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sakriani</namePart>
<namePart type="family">Sakti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nianwen</namePart>
<namePart type="family">Xue</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>ELRA and ICCL</publisher>
<place>
<placeTerm type="text">Torino, Italia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Conversations exhibit significant variation when different styles are employed by participants, often leading to subpar performance when a dialogue model is exclusively trained on single-style datasets. We present a cost-effective methodology for generating multi-style conversations, which can be used in the development of conversational agents. This methodology only assumes the availability of a conversational domain, such as a knowledge base, and leverages the generative capabilities of large language models. In a pilot study focused on the generation aspect of task-oriented dialogues, we extended the well-known MultiWOZ dataset to encompass multi-style variations. Our findings highlight two key experimental outcomes: (i) these novel resources pose challenges for current single-style models, and (ii) multi-style resources enhance the dialogue model‘s resilience to stylistic variations.</abstract>
<identifier type="citekey">labruna-magnini-2024-towards</identifier>
<location>
<url>https://aclanthology.org/2024.lrec-main.1431/</url>
</location>
<part>
<date>2024-05</date>
<extent unit="page">
<start>16473</start>
<end>16479</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Towards Cost-effective Multi-style Conversations: A Pilot Study in Task-oriented Dialogue Generation
%A Labruna, Tiziano
%A Magnini, Bernardo
%Y Calzolari, Nicoletta
%Y Kan, Min-Yen
%Y Hoste, Veronique
%Y Lenci, Alessandro
%Y Sakti, Sakriani
%Y Xue, Nianwen
%S Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
%D 2024
%8 May
%I ELRA and ICCL
%C Torino, Italia
%F labruna-magnini-2024-towards
%X Conversations exhibit significant variation when different styles are employed by participants, often leading to subpar performance when a dialogue model is exclusively trained on single-style datasets. We present a cost-effective methodology for generating multi-style conversations, which can be used in the development of conversational agents. This methodology only assumes the availability of a conversational domain, such as a knowledge base, and leverages the generative capabilities of large language models. In a pilot study focused on the generation aspect of task-oriented dialogues, we extended the well-known MultiWOZ dataset to encompass multi-style variations. Our findings highlight two key experimental outcomes: (i) these novel resources pose challenges for current single-style models, and (ii) multi-style resources enhance the dialogue model‘s resilience to stylistic variations.
%U https://aclanthology.org/2024.lrec-main.1431/
%P 16473-16479
Markdown (Informal)
[Towards Cost-effective Multi-style Conversations: A Pilot Study in Task-oriented Dialogue Generation](https://aclanthology.org/2024.lrec-main.1431/) (Labruna & Magnini, LREC-COLING 2024)
ACL