[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Tiziano Labruna


2024

pdf bib
Dynamic Task-Oriented Dialogue: A Comparative Study of Llama-2 and Bert in Slot Value Generation
Tiziano Labruna | Sofia Brenna | Bernardo Magnini
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics: Student Research Workshop

Recent advancements in instruction-based language models have demonstrated exceptional performance across various natural language processing tasks. We present a comprehensive analysis of the performance of two open-source language models, BERT and Llama-2, in the context of dynamic task-oriented dialogues. Focusing on the Restaurant domain and utilizing the MultiWOZ 2.4 dataset, our investigation centers on the models’ ability to generate predictions for masked slot values within text. The dynamic aspect is introduced through simulated domain changes, mirroring real-world scenarios where new slot values are incrementally added to a domain over time.This study contributes to the understanding of instruction-based models’ effectiveness in dynamic natural language understanding tasks when compared to traditional language models and emphasizes the significance of open-source, reproducible models in advancing research within the academic community.

pdf bib
Towards Cost-effective Multi-style Conversations: A Pilot Study in Task-oriented Dialogue Generation
Tiziano Labruna | Bernardo Magnini
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Conversations exhibit significant variation when different styles are employed by participants, often leading to subpar performance when a dialogue model is exclusively trained on single-style datasets. We present a cost-effective methodology for generating multi-style conversations, which can be used in the development of conversational agents. This methodology only assumes the availability of a conversational domain, such as a knowledge base, and leverages the generative capabilities of large language models. In a pilot study focused on the generation aspect of task-oriented dialogues, we extended the well-known MultiWOZ dataset to encompass multi-style variations. Our findings highlight two key experimental outcomes: (i) these novel resources pose challenges for current single-style models, and (ii) multi-style resources enhance the dialogue model’s resilience to stylistic variations.

2023

pdf bib
Addressing Domain Changes in Task-oriented Conversational Agents through Dialogue Adaptation
Tiziano Labruna | Bernardo Magnini
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics: Student Research Workshop

Recent task-oriented dialogue systems are trained on annotated dialogues, which, in turn, reflect certain domain information (e.g., restaurants or hotels in a given region). However, when such domain knowledge changes (e.g., new restaurants open), the initial dialogue model may become obsolete, decreasing the overall performance of the system. Through a number of experiments, we show, for instance, that adding 50% of new slot-values reduces of about 55% the dialogue state-tracker performance. In light of such evidence, we suggest that automatic adaptation of training dialogues is a valuable option for re-training obsolete models. We experimented with a dialogue adaptation approach based on fine-tuning a generative language model on domain changes, showing that a significant reduction of performance decrease can be obtained.

2021

pdf bib
Addressing Slot-Value Changes in Task-oriented Dialogue Systems through Dialogue Domain Adaptation
Tiziano Labruna | Bernardo Magnini
Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2021)

Recent task-oriented dialogue systems learn a model from annotated dialogues, and such dialogues are in turn collected and annotated so that they are consistent with certain domain knowledge. However, in real scenarios, domain knowledge is subject to frequent changes, and initial training dialogues may soon become obsolete, resulting in a significant decrease in the model performance. In this paper, we investigate the relationship between training dialogues and domain knowledge, and propose Dialogue Domain Adaptation, a methodology aiming at adapting initial training dialogues to changes intervened in the domain knowledge. We focus on slot-value changes (e.g., when new slot values are available to describe domain entities) and define an experimental setting for dialogue domain adaptation. First, we show that current state-of-the-art models for dialogue state tracking are still poorly robust to slot-value changes of the domain knowledge. Then, we compare different domain adaptation strategies, showing that simple techniques are effective to reduce the gap between training dialogues and domain knowledge.