[1]
M. Humayunet al.,Recent Progress in the Synthesis and Applications of Composite Photocatalysts: A Critical Review, Small Methods.6(2021) 2101395.
Google Scholar
[2]
D. Bouras et al., Efficiency of adding DD3+(Li/Mg) composite to plants and their fibers during the process of filtering solutions of toxic organic dyes, Optical Materials.131(2022) 112725.
DOI: 10.1016/j.optmat.2022.112725
Google Scholar
[3]
Q. Wang et al., Particulate photocatalysts for light-driven water splitting: Mechanisms, challenges, and design strategies, Chem. Rev.120(2020) 919–985.
DOI: 10.1021/acs.chemrev.9b00201
Google Scholar
[4]
E. R. García et al., Adsorption of Azo-Dye Orange II from Aqueous Solutions Using a Metal-Organic Framework Material: Iron- Benzenetricarboxylate, Materials (Basel).7(2014) 8037–8057.
DOI: 10.3390/ma7128037
Google Scholar
[5]
R. Li et al., Enhancing Hydrogen Adsorption Capacity of Metal Organic Frameworks M(BDC)TED0.5 through Constructing a Bimetallic Structure, ACS Omega.7(2022)20081-20091.
DOI: 10.1021/acsomega.2c01914
Google Scholar
[6]
S. Iqbal et al.,Controlled synthesis of Ag-doped CuO nanoparticles as a core with poly(acrylic acid) microgel shell for efcient removal of methylene blue under visible light. Journal of Materials Science: Materials in Electronics.
DOI: 10.1007/s10854-020-03377-9
Google Scholar
[7]
E. C. Cho et al, Preparation of Ni(OH)2/CuO heterostructures for improved photocatalytic degradation of organic pollutants and microorganism, Chemosphere.300(2022) 134484.
DOI: 10.1016/j.chemosphere.2022.134484
Google Scholar
[8]
M.V. Landau et al., Conversion of CO2, CO, and H2 in CO2 Hydrogenation to Fungible Liquid Fuels on Fe-Based Catalysts, Industrial &Engineering Chemistry Research . 45(2017)13334-13355.
DOI: 10.1021/acs.iecr.7b01817.s001
Google Scholar
[9]
D. Bouras et al.,Economic and ultrafast photocatalytic degradation of orange II using ceramic powders,Catalysts.11(2021)1-22.
DOI: 10.3390/catal11060733
Google Scholar
[10]
N. Riaz, B. K. Dutta, M. S. Khan, E. Nurlaela, et A. Dhabi, Photocatalytic Degradation of Orange II using Bimetallic Cu-Ni / TiO 2 Photocatalysts, 1(2012) pp.1-5.
Google Scholar
[11]
L. Ben Ali et al., Dégradation photochimique du colorant alizarine par des nanomatériaux à base de TiO2 ou ZnO tous seuls ou modifiés avec le Pr3+ préparés en milieu polyol (Photochemical degradation of alizarin dye using nanomaterials based on TiO2 or ZnO alone or modified, (2014). https://www.researchgate.net/publication/269574572.
Google Scholar
[12]
S.S. Shariffudin et al,Preparation and characterization of nanostructured CuO thin films using sol-gel dip coating, IOP Conf. Ser.: Mater. Sci. Eng.99(2015) 012007.
DOI: 10.1088/1757-899x/99/1/012007
Google Scholar
[13]
S.K. Hussian,Study of optical properties of copper oxide (CuO) thin film prepared by SPD technique, Muthanna J. Pure Sci. 4(2017)144–152.
Google Scholar
[14]
B. Dikra et al, Porosity properties of porous ceramic substrates added with zinc and magnesium material, Ceram. Int.46(2020) 20838–20846.
DOI: 10.1016/j.ceramint.2020.05.114
Google Scholar
[15]
R. D. Prabu et al,An e ff ect of temperature on structural , optical , photoluminescence and electrical properties of copper oxide thin fi lms deposited by nebulizer spray pyrolysis technique , Mater. Sci. Semicond. Process.74(2017) 129-135, 2018.
DOI: 10.1016/j.mssp.2017.10.023
Google Scholar
[16]
S.S. Shariffudin et al,Preparation and characterization of nanostructured CuO thin films using sol-gel dip coating, IOP Conf. Ser.: Mater. Sci. Eng.99(2015)012007.
DOI: 10.1088/1757-899x/99/1/012007
Google Scholar
[17]
R.R. Prabhu, A.C. Saritha, M.R. Shijeesh, M.K. Jayaraj, Fabrication of p-CuO/n-ZnO heterojunction diode via sol-gel spin coating Technique, Mater. Sci. Eng.220(2017) 82–90.
DOI: 10.1016/j.mseb.2017.03.008
Google Scholar
[18]
Zi-Y. Chen et al,Suppressing the Agglomeration of ZnO Nanoparticles in Air by Doping with Lower Electronegativity Metallic Ions: Implications for Ag/ZnO Electrical Contact Composites, ACS Applied Nano Materials.5(2022)10809-10817.
DOI: 10.1021/acsanm.2c02129
Google Scholar
[19]
A. N. Ahmed et al,Effect of Process Variables on Deposited Cupric Oxide Thin Film by Sol-Gel Spin Coating Technique Effect of Process Variables on Deposited Cupric Oxide Thin Film by Sol- Gel Spin Coating Technique ,(2018).
DOI: 10.1088/1757-899x/438/1/012001
Google Scholar
[20]
N. Thakur et al,Effect of (Ag, Co) co-doping on the structural and antibacterial efficiency of CuO nanoparticles: A rapid microwave assisted method», Journal of Environmental Chemical Engineering. 8(2020)104011.
DOI: 10.1016/j.jece.2020.104011
Google Scholar
[21]
Z. Xieet al,Effect of impurity in Cu2O nanowires on the degradation of methyl orange, J. Mater. Sci.: Mater. Electron.31(2020) 3817–3824.
Google Scholar
[22]
L. Zhang et al,N-doped nanoporous graphene decorated three-dimensional CuO nanowire network and its application to photocatalytic degradation of dyes , RSC Adv. 4(2014) 47455-47460.
DOI: 10.1039/c4ra06872f
Google Scholar
[23]
M. Borgwardt et al., « Femtosecond time-resolved two-photon photoemission studies of ultrafast carrier relaxation in Cu2O photoelectrodes»,Nature Communications, 10(2019).
DOI: 10.1038/s41467-019-10143-x
Google Scholar
[24]
H. Hashim, S. S. Shariffudin, P. S. M. Saad, et H. A. M. Ridah, Electrical and Optical Properties of Copper Oxide Thin Films by Sol-Gel Technique , IOP Conf. Ser. Mater. Sci. Eng.99(2015).
DOI: 10.1088/1757-899x/99/1/012032
Google Scholar
[25]
D. Rania, A. Rabah, T. Mamadou, et M. Christine, Elaboration de nanomatériaux fonctionnels pour des applications biomédicales , (2017)1-11.
Google Scholar
[26]
U. G. Akpan et B. H. Hameed, The advancements in sol – gel method of doped-TiO 2 photocatalysts,375(2010) 1-11.
DOI: 10.1016/j.apcata.2009.12.023
Google Scholar
[27]
K. K. H. S. Z. Sadeghi, A comparative investigation on growth , nanostructure and electrical properties of copper oxide thin films as a function of annealing conditions , 2014.
Google Scholar
[28]
M. Maraj, A. Raza, X. Wang, J. Chen, K. N. Riaz, et W. Sun, Mo-doped CuO Nanomaterial for Photocatalytic Degradation of Water Pollutants Under Visible Light,(2021) 1-11.
DOI: 10.3390/catal11101198
Google Scholar
[29]
L. Sun et al,Nitrogen-Doped Carbon-Coated CuO-In2O3 p–n Heterojunction for Remarkable Photocatalytic Hydrogen Evolution , Adv. Energy Mater., 9(2019) 1-11.
DOI: 10.1002/aenm.201902839
Google Scholar
[30]
M. R. Johan, M. Shahadan, M. Suan, N. L. Hawari, et H. A. Ching, Annealing Effects on the Properties of Copper Oxide Thin Films Prepared by Chemical Deposition,6(2011) 6094-6104.
DOI: 10.1016/s1452-3981(23)19665-9
Google Scholar
[31]
S. Kose, F. Atay, V. Bilgin, et I. Akyuz, Some physical properties of copper oxide films : The effect of substrate temperature, 111(2008)351-358.
DOI: 10.1016/j.matchemphys.2008.04.025
Google Scholar
[32]
J. F. P. and S. U. Department P Narayana Reddy, M Hari Prasad Reddy, Characterization of silver oxide films formed by reactive RF sputtering at different substrate .
DOI: 10.1155/2014/684317
Google Scholar
[33]
A. M. El Sayed et M. Shaban, Structural, optical and photocatalytic properties of Fe and (Co, Fe) co-doped copper oxide spin coated films, Spectrochim. ACTA PART A Mol. Biomol. Spectrosc,149(2015) 638-646.
DOI: 10.1016/j.saa.2015.05.010
Google Scholar
[34]
M. Science-poland, Fabrication and characterization of Zn doped CuO nanofiber using newly designed nanofiber generator for the photodegradation of methylene blue from textile effluent,36(2018) 520-529.
DOI: 10.2478/msp-2018-0056
Google Scholar
[35]
M. R. H. SIDDIQUI et R. A. and A. A.-W, S.F. ADIL, M.E. ASSAL,Synthesis and Characterization of Silver Oxide and Silver Chloride Nanoparticles with High Thermal Stability, 25(2013) 3405-3409.
DOI: 10.14233/ajchem.2013.13874
Google Scholar
[36]
S. M. Hosseini, I. A. Sarsari, P. Kameli, et H. Salamati, Effect of Ag doping on structural, optical, and photocatalytic properties of ZnO nanoparticles , J. Alloys Compd., 640(2015) 408-415
DOI: 10.1016/j.jallcom.2015.03.136
Google Scholar
[37]
H. A. Thabit et al.,Development of Ag-Doped ZnO Thin Films and Thermoluminescence (TLD) Characteristics for Radiation Technology», Nanomaterials (Basel)., 12 (2022)3068.
DOI: 10.3390/nano12173068
Google Scholar
[38]
Zhou F et al, Doping Ag in ZnO Nanorods to Improve the Performance of Related Enzymatic Glucose Sensors, Sensors.17(2017) 2214.
DOI: 10.3390/s17102214
Google Scholar
[39]
Zi-Y. Chen et al., Tuning the interface adhesion of Ag/ZnO composites by metallic dopants: A DFT study, Computational Materials Science.224 (2023) 112151.
DOI: 10.1016/j.commatsci.2023.112151
Google Scholar
[40]
X. Wang et al,Ag2O as a New Visible-Light Photocatalyst: Self-Stability and High Photocatalytic Activity, Chemistry - A European Journal. 17(2011)7777-80.
Google Scholar
[41]
T. L. Xinqiang Zhang et al,Targeting inside charge carriers transfer of photocatalyst: Selective deposition of Ag2O on BiVO4 with enhanced UV–vis-NIR photocatalytic oxidation activity, Applied Catalysis B: Environmental,251(2019) 220-228.
DOI: 10.1016/j.apcatb.2019.03.062
Google Scholar
[42]
M. Nesa, M. Sharmin, K. S. Hossain, et A. H. Bhuiyan, Structural, morphological, optical and electrical properties of spray deposited zinc doped copper oxide thin films , J. Mater. Sci. Mater. Electron. 28 (2017)12523-12534.
DOI: 10.1007/s10854-017-7075-3
Google Scholar
[43]
E. Benrezgua et al, Synthesis and properties of copper doped zinc oxide thin films by sol-gel , spin coating and dipping : A characterization review , J. Mol. Struct. 1267(2022)133639.
DOI: 10.1016/j.molstruc.2022.133639
Google Scholar
[44]
S. Das et T. Alford, Structural and optical properties of Ag-doped copper oxide thin films on polyethylene napthalate substrate prepared by low temperature microwave annealing, (2013).
DOI: 10.1063/1.4812584
Google Scholar
[45]
N. D. Dinesh et K. Kumar, Synthesis of CuO and Ag doped CuO nanoparticles from Muntingia calabura leaf extract and evaluation of their antimicrobial potential,(2019).
DOI: 10.1504/ijnbm.2019.10023555
Google Scholar
[46]
D. Bouras et al,Cu:ZnO deposited on porous ceramic substrates by a simple thermal method for photocatalytic application, Ceram. int.44(2018)21546–21555.
DOI: 10.1016/j.ceramint.2018.08.218
Google Scholar
[47]
H. Hussin, R. Salam, R. Jasim, et N. F. Habubi, Optical and Structural Properties of Nanostructured CuO Thin Films Doped by Mn .(2020).
Google Scholar
[48]
R. Sharma, S.L. Patel, M. D. Kannan, et M. S. Dhaka, Effect of different annealing conditions on CdZnTe thin films for absorber layer applications , Surfaces and Interfaces. 33(2022)102204.
DOI: 10.1016/j.surfin.2022.102204
Google Scholar
[49]
R. Marnadu et al,Significant enhancement in photosensitivity, responsivity, detectivity and quantum efficiency of Co3O4 nanostructured thin film-based photodetectors through Mo doping developed by spray pyrolysis method , Surfaces and Interfaces.34(2022)102366. https://doi.org/
DOI: 10.1016/j.surfin.2022.102366
Google Scholar
[50]
A. B. Bodade, M. A. Taiwade, et G. N. Chaudhari, Bioelectrode based chitosan-nano copper oxide for application to lipase biosensor , J. Appl. Pharm. Res. 5(2017)30-39
Google Scholar
[51]
M. F. A. Aboud, S. Haider, et M. F. Warsi, Fabrication of Binary Metal Doped CuO Nanocatalyst and Their Application for the Industrial Effluents Treatmen , Ceram. Int.(2020)
DOI: 10.1016/j.ceramint.2020.11.064
Google Scholar
[52]
L. Radev, I. Michailova, D. Zaimova, et T. Dimova, In vitro bioactivity of Silver containing sol-gel glasses : FTIR analysis,Imp.J.Interdiscip.Res(2017) 316-323.
Google Scholar
[53]
M. G. Méndez-Medrano et al.Surface Modification of TiO2 with Ag Nanoparticles and CuO Nanoclusters for Application in Photocatalysis, J. Phys. Chem.120 (2016)5143-5154
DOI: 10.1021/acs.jpcc.5b10703
Google Scholar
[54]
N. Mukherjee et al.CuO nano-whiskers: Electrodeposition, Raman analysis, photoluminescence study and photocatalytic activity, Mater. Lett. 65 (2011) 3248-3250
DOI: 10.1016/j.matlet.2011.07.016
Google Scholar
[55]
X. Chenet al, Cu2O nanoparticles and multi-branched nanowires asanodes for lithium-ion batteries, NANO 13.(2018)1850103.
Google Scholar
[56]
M. F. A. Aboud, S. Haider, et M. F. Warsi, Fabrication of Binary Metal Doped CuO Nanocatalyst and Their Application for the Industrial Effluents Treatmen , Ceram. Int.(2020).
Google Scholar
[57]
K. Sahu, S. Choudhary, S. A. Khan, et A. Pandey,Thermal evolution of morphological , structural , optical and photocatalytic properties of CuO thin films ,Nano-Structures & Nano-Objects.17(2019)92-102.
DOI: 10.1016/j.nanoso.2018.12.005
Google Scholar
[58]
S. Lacombe et al, La photocatalyse pour l'élimination des polluants, Actual .Chim.(2007)79-93.
Google Scholar
[59]
B. Dikra et al, High photocatalytic capacity of porous ceramic-based powder doped with MgO, Journal of the Korean Ceramic Society. 60( 1) (2023) 155-168. https://doi.org/.
DOI: 10.1007/s43207-022-00254-5
Google Scholar
[60]
D. Bouras et al, Comparison between CrZO and AlZO thin layers and the effect of doping on the lattice properties of zinc oxide, Optical and Quantum Electronics (2022) 54-824
DOI: 10.1007/s11082-022-04161-1
Google Scholar
[61]
M.M. Najafpour, A.N. Moghaddam, H. Dau, I. Zaharieva, Fragments of Layered Manganese Oxide Are the Real Water Oxidation Catalyst after Transformation of Molecular Precursor on Clay J. Am. Chem. Soc. 136 (2014)7245-7248.
DOI: 10.1021/ja5028716
Google Scholar
[62]
I. Khan, M. Luo, S. Khan, H. Asghar, M. Saeed, S. Khan, A. Khan, M. Humayun, L. Guo, B. Shi, Green synthesis of SrO bridged LaFeO3/g-C3N4 nanocomposites for CO2 conversion and bisphenol A degradation with new insights into mechanism. Environ.Res.7, 112650 (2022).
DOI: 10.1016/j.envres.2021.112650
Google Scholar
[63]
M. Wiechen, M.M. Najafpour, S.I. Allakhverdiev, L. Spiccia, Water oxidation catalysis by manganese oxides: learning from evolution Energy Environ. Sci. 7(2014)2203-2212.
DOI: 10.1039/c4ee00681j
Google Scholar
[64]
J. He et al, Performance promotion of Ag2O photocatalyst by particle size and crystal surface regulation, New Journal of Chemistry.25(2020).
Google Scholar
[65]
H. Xu et al,The formation of visible light-driven Ag/Ag2O photocatalyst with excellent property of photocatalytic activity and photocorrosion inhibition, Journal of Colloid and Interface Science.516 (2018)511-521.
DOI: 10.1016/j.jcis.2018.01.071
Google Scholar