[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Photocatalytic Degradation of Orange II by Active Layers of Ag-Doped CuO Deposited by Spin-Coating Method

Article Preview

Abstract:

In this work we studied the effect of doping on heterogeneous photocatalysis application we used the samples CuO, 5% Ag:CuO, 15% Ag:CuO, 25% Ag:CuO and 50% Ag:CuO catalysts thin layers which were prepared by the sol gel method on a glass substrate. The structural, morphological, optical and electrical characteristics of these layers were studied by XRD, IR, SEM, UV-Vis spectrophotometry and four-point analysis. The results of the XRD, it is observed that the structure of the monoclinic phase develops, with preferential orientations following the plane (-111). This indicated that the thin films are polycrystalline, these results and confirmed by the IR spectra. In the case of Ag doping the SEM revealed the creation of pores on the surface of the samples, which enhanced the degradation of orange II under UV light. The gap energy decreases from 2.17 eV to 1.25 eV with increasing doping. These results show that thin films doped with Ag exhibit a higher degradation than that obtained by pure CuO. After 5 hours in the case of doping with 50% Ag the percentage of degradation is 43%, on the other hand in the pure case the percentage of degradation is 27%.With this, it can be said that 50% Ag:CuO is a good catalyst because the sample has pores, and therefore a larger catalytic area. Creating pores on the surface of the samples, obtaining a less energy gap enables the creation of a greater number of •Oand OH• that works to disintegrate the dye and give the white color to the solution.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1-19

Citation:

Online since:

September 2023

Export:

Price:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Humayunet al.,Recent Progress in the Synthesis and Applications of Composite Photocatalysts: A Critical Review, Small Methods.6(2021) 2101395.

Google Scholar

[2] D. Bouras et al., Efficiency of adding DD3+(Li/Mg) composite to plants and their fibers during the process of filtering solutions of toxic organic dyes, Optical Materials.131(2022) 112725.

DOI: 10.1016/j.optmat.2022.112725

Google Scholar

[3] Q. Wang et al., Particulate photocatalysts for light-driven water splitting: Mechanisms, challenges, and design strategies, Chem. Rev.120(2020) 919–985.

DOI: 10.1021/acs.chemrev.9b00201

Google Scholar

[4] E. R. García et al., Adsorption of Azo-Dye Orange II from Aqueous Solutions Using a Metal-Organic Framework Material: Iron- Benzenetricarboxylate, Materials (Basel).7(2014) 8037–8057.

DOI: 10.3390/ma7128037

Google Scholar

[5] R. Li et al., Enhancing Hydrogen Adsorption Capacity of Metal Organic Frameworks M(BDC)TED0.5 through Constructing a Bimetallic Structure, ACS Omega.7(2022)20081-20091.

DOI: 10.1021/acsomega.2c01914

Google Scholar

[6] S. Iqbal et al.,Controlled synthesis of Ag-doped CuO nanoparticles as a core with poly(acrylic acid) microgel shell for efcient removal of methylene blue under visible light. Journal of Materials Science: Materials in Electronics.

DOI: 10.1007/s10854-020-03377-9

Google Scholar

[7] E. C. Cho et al, Preparation of Ni(OH)2/CuO heterostructures for improved photocatalytic degradation of organic pollutants and microorganism, Chemosphere.300(2022) 134484.

DOI: 10.1016/j.chemosphere.2022.134484

Google Scholar

[8] M.V. Landau et al., Conversion of CO2, CO, and H2 in CO2 Hydrogenation to Fungible Liquid Fuels on Fe-Based Catalysts, Industrial &Engineering Chemistry Research . 45(2017)13334-13355.

DOI: 10.1021/acs.iecr.7b01817.s001

Google Scholar

[9] D. Bouras et al.,Economic and ultrafast photocatalytic degradation of orange II using ceramic powders,Catalysts.11(2021)1-22.

DOI: 10.3390/catal11060733

Google Scholar

[10] N. Riaz, B. K. Dutta, M. S. Khan, E. Nurlaela, et A. Dhabi, Photocatalytic Degradation of Orange II using Bimetallic Cu-Ni / TiO 2 Photocatalysts, 1(2012) pp.1-5.

Google Scholar

[11] L. Ben Ali et al., Dégradation photochimique du colorant alizarine par des nanomatériaux à base de TiO2 ou ZnO tous seuls ou modifiés avec le Pr3+ préparés en milieu polyol (Photochemical degradation of alizarin dye using nanomaterials based on TiO2 or ZnO alone or modified, (2014). https://www.researchgate.net/publication/269574572.

Google Scholar

[12] S.S. Shariffudin et al,Preparation and characterization of nanostructured CuO thin films using sol-gel dip coating, IOP Conf. Ser.: Mater. Sci. Eng.99(2015) 012007.

DOI: 10.1088/1757-899x/99/1/012007

Google Scholar

[13] S.K. Hussian,Study of optical properties of copper oxide (CuO) thin film prepared by SPD technique, Muthanna J. Pure Sci. 4(2017)144–152.

Google Scholar

[14] B. Dikra et al, Porosity properties of porous ceramic substrates added with zinc and magnesium material, Ceram. Int.46(2020) 20838–20846.

DOI: 10.1016/j.ceramint.2020.05.114

Google Scholar

[15] R. D. Prabu et al,An e ff ect of temperature on structural , optical , photoluminescence and electrical properties of copper oxide thin fi lms deposited by nebulizer spray pyrolysis technique , Mater. Sci. Semicond. Process.74(2017) 129-135, 2018.

DOI: 10.1016/j.mssp.2017.10.023

Google Scholar

[16] S.S. Shariffudin et al,Preparation and characterization of nanostructured CuO thin films using sol-gel dip coating, IOP Conf. Ser.: Mater. Sci. Eng.99(2015)012007.

DOI: 10.1088/1757-899x/99/1/012007

Google Scholar

[17] R.R. Prabhu, A.C. Saritha, M.R. Shijeesh, M.K. Jayaraj, Fabrication of p-CuO/n-ZnO heterojunction diode via sol-gel spin coating Technique, Mater. Sci. Eng.220(2017) 82–90.

DOI: 10.1016/j.mseb.2017.03.008

Google Scholar

[18] Zi-Y. Chen et al,Suppressing the Agglomeration of ZnO Nanoparticles in Air by Doping with Lower Electronegativity Metallic Ions: Implications for Ag/ZnO Electrical Contact Composites, ACS Applied Nano Materials.5(2022)10809-10817.

DOI: 10.1021/acsanm.2c02129

Google Scholar

[19] A. N. Ahmed et al,Effect of Process Variables on Deposited Cupric Oxide Thin Film by Sol-Gel Spin Coating Technique Effect of Process Variables on Deposited Cupric Oxide Thin Film by Sol- Gel Spin Coating Technique ,(2018).

DOI: 10.1088/1757-899x/438/1/012001

Google Scholar

[20] N. Thakur et al,Effect of (Ag, Co) co-doping on the structural and antibacterial efficiency of CuO nanoparticles: A rapid microwave assisted method», Journal of Environmental Chemical Engineering. 8(2020)104011.

DOI: 10.1016/j.jece.2020.104011

Google Scholar

[21] Z. Xieet al,Effect of impurity in Cu2O nanowires on the degradation of methyl orange, J. Mater. Sci.: Mater. Electron.31(2020) 3817–3824.

Google Scholar

[22] L. Zhang et al,N-doped nanoporous graphene decorated three-dimensional CuO nanowire network and its application to photocatalytic degradation of dyes , RSC Adv. 4(2014) 47455-47460.

DOI: 10.1039/c4ra06872f

Google Scholar

[23] M. Borgwardt et al., « Femtosecond time-resolved two-photon photoemission studies of ultrafast carrier relaxation in Cu2O photoelectrodes»,Nature Communications, 10(2019).

DOI: 10.1038/s41467-019-10143-x

Google Scholar

[24] H. Hashim, S. S. Shariffudin, P. S. M. Saad, et H. A. M. Ridah, Electrical and Optical Properties of Copper Oxide Thin Films by Sol-Gel Technique , IOP Conf. Ser. Mater. Sci. Eng.99(2015).

DOI: 10.1088/1757-899x/99/1/012032

Google Scholar

[25] D. Rania, A. Rabah, T. Mamadou, et M. Christine, Elaboration de nanomatériaux fonctionnels pour des applications biomédicales , (2017)1-11.

Google Scholar

[26] U. G. Akpan et B. H. Hameed, The advancements in sol – gel method of doped-TiO 2 photocatalysts,375(2010) 1-11.

DOI: 10.1016/j.apcata.2009.12.023

Google Scholar

[27] K. K. H. S. Z. Sadeghi, A comparative investigation on growth , nanostructure and electrical properties of copper oxide thin films as a function of annealing conditions , 2014.

Google Scholar

[28] M. Maraj, A. Raza, X. Wang, J. Chen, K. N. Riaz, et W. Sun, Mo-doped CuO Nanomaterial for Photocatalytic Degradation of Water Pollutants Under Visible Light,(2021) 1-11.

DOI: 10.3390/catal11101198

Google Scholar

[29] L. Sun et al,Nitrogen-Doped Carbon-Coated CuO-In2O3 p–n Heterojunction for Remarkable Photocatalytic Hydrogen Evolution , Adv. Energy Mater., 9(2019) 1-11.

DOI: 10.1002/aenm.201902839

Google Scholar

[30] M. R. Johan, M. Shahadan, M. Suan, N. L. Hawari, et H. A. Ching, Annealing Effects on the Properties of Copper Oxide Thin Films Prepared by Chemical Deposition,6(2011) 6094-6104.

DOI: 10.1016/s1452-3981(23)19665-9

Google Scholar

[31] S. Kose, F. Atay, V. Bilgin, et I. Akyuz, Some physical properties of copper oxide films : The effect of substrate temperature, 111(2008)351-358.

DOI: 10.1016/j.matchemphys.2008.04.025

Google Scholar

[32] J. F. P. and S. U. Department P Narayana Reddy, M Hari Prasad Reddy, Characterization of silver oxide films formed by reactive RF sputtering at different substrate .

DOI: 10.1155/2014/684317

Google Scholar

[33] A. M. El Sayed et M. Shaban, Structural, optical and photocatalytic properties of Fe and (Co, Fe) co-doped copper oxide spin coated films, Spectrochim. ACTA PART A Mol. Biomol. Spectrosc,149(2015) 638-646.

DOI: 10.1016/j.saa.2015.05.010

Google Scholar

[34] M. Science-poland, Fabrication and characterization of Zn doped CuO nanofiber using newly designed nanofiber generator for the photodegradation of methylene blue from textile effluent,36(2018) 520-529.

DOI: 10.2478/msp-2018-0056

Google Scholar

[35] M. R. H. SIDDIQUI et R. A. and A. A.-W, S.F. ADIL, M.E. ASSAL,Synthesis and Characterization of Silver Oxide and Silver Chloride Nanoparticles with High Thermal Stability, 25(2013) 3405-3409.

DOI: 10.14233/ajchem.2013.13874

Google Scholar

[36] S. M. Hosseini, I. A. Sarsari, P. Kameli, et H. Salamati, Effect of Ag doping on structural, optical, and photocatalytic properties of ZnO nanoparticles , J. Alloys Compd., 640(2015) 408-415

DOI: 10.1016/j.jallcom.2015.03.136

Google Scholar

[37] H. A. Thabit et al.,Development of Ag-Doped ZnO Thin Films and Thermoluminescence (TLD) Characteristics for Radiation Technology», Nanomaterials (Basel)., 12 (2022)3068.

DOI: 10.3390/nano12173068

Google Scholar

[38] Zhou F et al, Doping Ag in ZnO Nanorods to Improve the Performance of Related Enzymatic Glucose Sensors, Sensors.17(2017) 2214.

DOI: 10.3390/s17102214

Google Scholar

[39] Zi-Y. Chen et al., Tuning the interface adhesion of Ag/ZnO composites by metallic dopants: A DFT study, Computational Materials Science.224 (2023) 112151.

DOI: 10.1016/j.commatsci.2023.112151

Google Scholar

[40] X. Wang et al,Ag2O as a New Visible-Light Photocatalyst: Self-Stability and High Photocatalytic Activity, Chemistry - A European Journal. 17(2011)7777-80.

Google Scholar

[41] T. L. Xinqiang Zhang et al,Targeting inside charge carriers transfer of photocatalyst: Selective deposition of Ag2O on BiVO4 with enhanced UV–vis-NIR photocatalytic oxidation activity, Applied Catalysis B: Environmental,251(2019) 220-228.

DOI: 10.1016/j.apcatb.2019.03.062

Google Scholar

[42] M. Nesa, M. Sharmin, K. S. Hossain, et A. H. Bhuiyan, Structural, morphological, optical and electrical properties of spray deposited zinc doped copper oxide thin films , J. Mater. Sci. Mater. Electron. 28 (2017)12523-12534.

DOI: 10.1007/s10854-017-7075-3

Google Scholar

[43] E. Benrezgua et al, Synthesis and properties of copper doped zinc oxide thin films by sol-gel , spin coating and dipping : A characterization review , J. Mol. Struct. 1267(2022)133639.

DOI: 10.1016/j.molstruc.2022.133639

Google Scholar

[44] S. Das et T. Alford, Structural and optical properties of Ag-doped copper oxide thin films on polyethylene napthalate substrate prepared by low temperature microwave annealing, (2013).

DOI: 10.1063/1.4812584

Google Scholar

[45] N. D. Dinesh et K. Kumar, Synthesis of CuO and Ag doped CuO nanoparticles from Muntingia calabura leaf extract and evaluation of their antimicrobial potential,(2019).

DOI: 10.1504/ijnbm.2019.10023555

Google Scholar

[46] D. Bouras et al,Cu:ZnO deposited on porous ceramic substrates by a simple thermal method for photocatalytic application, Ceram. int.44(2018)21546–21555.

DOI: 10.1016/j.ceramint.2018.08.218

Google Scholar

[47] H. Hussin, R. Salam, R. Jasim, et N. F. Habubi, Optical and Structural Properties of Nanostructured CuO Thin Films Doped by Mn .(2020).

Google Scholar

[48] R. Sharma, S.L. Patel, M. D. Kannan, et M. S. Dhaka, Effect of different annealing conditions on CdZnTe thin films for absorber layer applications , Surfaces and Interfaces. 33(2022)102204.

DOI: 10.1016/j.surfin.2022.102204

Google Scholar

[49] R. Marnadu et al,Significant enhancement in photosensitivity, responsivity, detectivity and quantum efficiency of Co3O4 nanostructured thin film-based photodetectors through Mo doping developed by spray pyrolysis method , Surfaces and Interfaces.34(2022)102366. https://doi.org/

DOI: 10.1016/j.surfin.2022.102366

Google Scholar

[50] A. B. Bodade, M. A. Taiwade, et G. N. Chaudhari, Bioelectrode based chitosan-nano copper oxide for application to lipase biosensor , J. Appl. Pharm. Res. 5(2017)30-39

Google Scholar

[51] M. F. A. Aboud, S. Haider, et M. F. Warsi, Fabrication of Binary Metal Doped CuO Nanocatalyst and Their Application for the Industrial Effluents Treatmen , Ceram. Int.(2020)

DOI: 10.1016/j.ceramint.2020.11.064

Google Scholar

[52] L. Radev, I. Michailova, D. Zaimova, et T. Dimova, In vitro bioactivity of Silver containing sol-gel glasses : FTIR analysis,Imp.J.Interdiscip.Res(2017) 316-323.

Google Scholar

[53] M. G. Méndez-Medrano et al.Surface Modification of TiO2 with Ag Nanoparticles and CuO Nanoclusters for Application in Photocatalysis, J. Phys. Chem.120 (2016)5143-5154

DOI: 10.1021/acs.jpcc.5b10703

Google Scholar

[54] N. Mukherjee et al.CuO nano-whiskers: Electrodeposition, Raman analysis, photoluminescence study and photocatalytic activity, Mater. Lett. 65 (2011) 3248-3250

DOI: 10.1016/j.matlet.2011.07.016

Google Scholar

[55] X. Chenet al, Cu2O nanoparticles and multi-branched nanowires asanodes for lithium-ion batteries, NANO 13.(2018)1850103.

Google Scholar

[56] M. F. A. Aboud, S. Haider, et M. F. Warsi, Fabrication of Binary Metal Doped CuO Nanocatalyst and Their Application for the Industrial Effluents Treatmen , Ceram. Int.(2020).

Google Scholar

[57] K. Sahu, S. Choudhary, S. A. Khan, et A. Pandey,Thermal evolution of morphological , structural , optical and photocatalytic properties of CuO thin films ,Nano-Structures & Nano-Objects.17(2019)92-102.

DOI: 10.1016/j.nanoso.2018.12.005

Google Scholar

[58] S. Lacombe et al, La photocatalyse pour l'élimination des polluants, Actual .Chim.(2007)79-93.

Google Scholar

[59] B. Dikra et al, High photocatalytic capacity of porous ceramic-based powder doped with MgO, Journal of the Korean Ceramic Society. 60( 1) (2023) 155-168. https://doi.org/.

DOI: 10.1007/s43207-022-00254-5

Google Scholar

[60] D. Bouras et al, Comparison between CrZO and AlZO thin layers and the effect of doping on the lattice properties of zinc oxide, Optical and Quantum Electronics (2022) 54-824

DOI: 10.1007/s11082-022-04161-1

Google Scholar

[61] M.M. Najafpour, A.N. Moghaddam, H. Dau, I. Zaharieva, Fragments of Layered Manganese Oxide Are the Real Water Oxidation Catalyst after Transformation of Molecular Precursor on Clay J. Am. Chem. Soc. 136 (2014)7245-7248.

DOI: 10.1021/ja5028716

Google Scholar

[62] I. Khan, M. Luo, S. Khan, H. Asghar, M. Saeed, S. Khan, A. Khan, M. Humayun, L. Guo, B. Shi, Green synthesis of SrO bridged LaFeO3/g-C3N4 nanocomposites for CO2 conversion and bisphenol A degradation with new insights into mechanism. Environ.Res.7, 112650 (2022).

DOI: 10.1016/j.envres.2021.112650

Google Scholar

[63] M. Wiechen, M.M. Najafpour, S.I. Allakhverdiev, L. Spiccia, Water oxidation catalysis by manganese oxides: learning from evolution Energy Environ. Sci. 7(2014)2203-2212.

DOI: 10.1039/c4ee00681j

Google Scholar

[64] J. He et al, Performance promotion of Ag2O photocatalyst by particle size and crystal surface regulation, New Journal of Chemistry.25(2020).

Google Scholar

[65] H. Xu et al,The formation of visible light-driven Ag/Ag2O photocatalyst with excellent property of photocatalytic activity and photocorrosion inhibition, Journal of Colloid and Interface Science.516 (2018)511-521.

DOI: 10.1016/j.jcis.2018.01.071

Google Scholar