[1]
P. Bradu, A. Biswas, C. Nair, S. Sreevalsakumar, M. Patil, S. Kannampuzha, & A. V. Gopalakrishnan, "Recent advances in green technology and Industrial Revolution 4.0 for a sustainable future," Environmental Science and Pollution Research, 2022, 1-32.
DOI: 10.1007/s11356-022-20024-4
Google Scholar
[2]
D. V. Singh et al., "Wonders of nanotechnology for remediation of polluted aquatic environs," Fresh Water Pollution Dynamics and Remediation, 2020, 319-339
DOI: 10.1007/978-981-13-8277-2_17
Google Scholar
[3]
K. Yang and Y.-Q. Ma, "Computer simulation of the translocation of nanoparticles with different shapes across a lipid bilayer," Nature Nanotechnology, 2010, 5(8), 579-583.
DOI: 10.1038/nnano.2010.141
Google Scholar
[4]
F. Trotta and A. Mele, "Nanomaterials: classification and properties," Nanosponges Synthesis and Applications, 2019, 1-26. ISBN 978-3-527-34100-9
DOI: 10.1002/9783527341009.ch1
Google Scholar
[5]
V. Stone, B. Nowack, A. Baun, N. van den Brink, F. von der Kammer, M. Dusinska, R. Handy, S. Hankin, M. Hassellöv, E. Joner, and T.F. Fernandes, "Nanomaterials for environmental studies: classification, reference material issues, and strategies for physico-chemical characterisation," Science of the total environment, 2010, 408(7), pp.1745-1754.
DOI: 10.1016/j.scitotenv.2009.10.035
Google Scholar
[6]
S. Khan, S. Mansoor, Z. Rafi, B. Kumari, A. Shoaib, M. Saeed, S. Alshehri, M.M. Ghoneim, M. Rahamathulla, U. Hani, and F. Shakeel, "A review on nanotechnology: Properties, applications, and mechanistic insights of cellular uptake mechanisms," Journal of Molecular Liquids, 2022, 348, p.118008.
DOI: 10.1016/j.molliq.2021.118008
Google Scholar
[7]
F. Wang, Z. Xie, H. Zhang, C. Liu, and Y. Zhang, "Highly luminescent organosilane-functionalized carbon dots," Advanced Functional Materials, 2011, 21(6), pp.1027-1031.
DOI: 10.1002/adfm.201002279
Google Scholar
[8]
P. Das, S. Ganguly, S. Banerjee, and N. C. Das, "Graphene based emergent nanolights: A short review on the synthesis, properties and application," Research on Chemical Intermediates, 2019, 45, pp.3823-3853.
DOI: 10.1007/s11164-019-03823-2
Google Scholar
[9]
S. Solgi, M. S. Seyed Dorraji, S. F. Hosseini, M. H. Rasoulifard, I. Hajimiri, and A. Amani-Ghadim, "Improvement of microwave absorption properties of polyester coatings using NiFe2O4, X-doped g-C3N4 (X= S, P, and O), and MTiO3 (M= Fe, Mg, and Zn) nanofillers," Scientific Reports, 2021, 11(1), p.19339.
DOI: 10.1038/s41598-021-98666-6
Google Scholar
[10]
M. S. Waghmode, A. B. Gunjal, J. A. Mulla, N. N. Patil, and N. N. Nawani, "Studies on the titanium dioxide nanoparticles: Biosynthesis, applications and remediation," . Applied Sciences, 2019, 1(4), p.310.
DOI: 10.1007/s42452-019-0337-3
Google Scholar
[11]
S. Wahyuningsih, A. H. Ramelan, and Y. R. Kristiawan, "Transformation of Magnetite (Fe3O4) and Maghemite (γ–Fe2O3) to α–Fe2O3 from Magnetic Phase of Glagah Iron Sand," Journal of Engineering Science, 2019, 15(1), pp.11-21.
DOI: 10.21315/jes2019.15.2
Google Scholar
[12]
J. A. Morales-Morales, "Synthesis of hematite α-Fe2O3 nano powders by the controlled precipitation method," Cienc. En Desarro, 2017, vol. 8, no. 1, p.99–107. ISSN 0121-7488
DOI: 10.19053/01217488.v8.n1.2017.4494
Google Scholar
[13]
P. Xu, G. Ming, D. Lian, C. Ling, S. Hu, and M. Hua, "Use of iron oxide nanomaterials in wastewater treatment: a review," A review. Science of the Total Environment, 2012, 424, 1–10.
DOI: 10.1016/j.scitotenv.2012.02.023
Google Scholar
[14]
M. I. Anik, M. K. Hossain, I. Hossain, I. Ahmed, and R. M. Doha, "Biomedical applications of magnetic nanoparticles," in Magnetic Nanoparticle-Based Hybrid Materials, Elsevier, 2021, p.463–497
DOI: 10.1016/B978-0-12-823688-8.00002-8
Google Scholar
[15]
G. M. Nair, T. Sajini, and B. Mathew, "Advanced green approaches for metal and metal oxide nanoparticles synthesis and their environmental applications," Talanta Open, 2022, 5, p.100080.
DOI: 10.1016/j.talo.2021.100080
Google Scholar
[16]
W. Wu, Q. He, & C. Jiang, Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale research letters, 2008, 3(11), 397–415.
DOI: 10.1007/s11671-008-9174-9
Google Scholar
[17]
H. Chen and Q. Miao, "Recent advances and attempts in synthesis of conjugated nanobelts," Journal of Physical Organic Chemistry, 2020, 33(12), p.e4145
DOI: 10.1002/poc.4145
Google Scholar
[18]
N. Hanžić, T. Jurkin, A. Maksimović, and M. Gotić, "The synthesis of gold nanoparticles by a citrate-radiolytical method," Radiation Physical Chemistry, 2015, vol. 106, p.77–82
DOI: 10.1016/j.radphyschem.2014.07.006
Google Scholar
[19]
K. S. Kim and T. H. Kim, "Nanofabrication by thermal plasma jets: From nanoparticles to low-dimensional nanomaterials," Journal of Applied Physics, 2019, 125(7), p.070901
DOI: 10.1063/1.5060977
Google Scholar
[20]
B. G. Pollet and M. Ashokkumar, Introduction to ultrasound, sonochemistry and sonoelectrochemistry. Springer Nature, Springer Nature, 2019, pp.1-39. https://doi.org/10.1007.978-3-030-25863-7_1
Google Scholar
[21]
G. Cravotto and P. Cintas, "Power ultrasound in organic synthesis: moving cavitational chemistry from academia to innovative and large-scale applications," Chemical Society Reviews, 2006, 35(2), pp.180-196
DOI: 10.1039/B503848K
Google Scholar
[22]
K. Hachem, M.J. Ansari, R.O. Saleh, H.H. Kzar, M.E. Al-Gazally, U.S. Altimari, S.A. Hussein, H.T. Mohammed, A.T. Hammid, and E. Kianfar, Methods of Chemical Synthesis in the Synthesis of Nanomaterial and Nanoparticles by the Chemical Deposition Method: A Review. Bio Nanoscience, 2022, 12(3), pp.1032-1057
DOI: 10.1007/s12668-022-00996-w
Google Scholar
[23]
M. K. Yoo, I. Y. Kim, E. M. Kim, H. J. Jeong, C. M. Lee, Y. Y. Jeong, C. S. Cho, Superparamagnetic iron oxide nanoparticles coated with galactose-carrying polymer for hepatocyte targeting. Journal of Biomedicine and Biotechnology, 2007, vol. 2007
DOI: 10.1155/2007/94740
Google Scholar
[24]
S. K. Evans, O. N. Wesley, L. Koech, S. M. Nelana, and H. L. Rutto, "Structural Features of Cellulose and Cellulose Nanocrystals via In Situ Incorporation of Magnetic Iron Oxide Nanoparticles: Modification and Characterization," Coatings, 2022, vol. 13, no. 1, p.39
DOI: 10.3390/coatings13010039
Google Scholar
[25]
I. Chamritski and G. Burns, "Infrared-and Raman-active phonons of magnetite, maghemite, and hematite: a computer simulation and spectroscopic study," Journal of Physical Chemistry B, 2005, vol. 109, no. 11, p.4965–4968
DOI: 10.1021/jp048748h
Google Scholar
[26]
T. Tsuzuki and P. G. McCormick, "Nanopowders synthesized by mechanochemical processing," Journal of Materials Science, 2004, vol. 39, p.5143–5146
DOI: 10.1023/B:JMSC.0000039199.56155.f9
Google Scholar
[27]
J. Belinha, J.C. Reis Campos, E. Fonseca, M.H. Figueiral Silva, M. Arcelina Marques, M.F. Gentil Costa, and S. Oliveira, Advances and Current Trends in Biomechanics: Proceedings of the 9th Portuguese Congress on Biomechanics, CNB2021, 19 - 20 February 2021, Porto, Portugal (1st ed.). CRC Press.
DOI: 10.1201/9781003217152
Google Scholar
[28]
E. Grabias-Blicharz and W. Franus, "A critical review on mechanochemical processing of fly ash and fly ash-derived materials," Science of The Total Environment, 2022, vol. 860, p.160529
DOI: 10.1016/j.scitotenv.2022.160529
Google Scholar
[29]
A. Sinha, J. Sakon, D.K. Roper, W.J. Li, A. Ghosh, H. Han, V.P. Zharov, and J.W. Kim, Nanoscale particles and multifunctional hybrid soft nanomaterials in bio/nanomedicine. In Soft Matter and Biomaterials on the Nanoscale: The WSPC Reference on Functional Nanomaterials—Part I Volume 4: Nanomedicine: Nanoscale Materials in Nano/BioMedicine, 2020, pp.1-58
DOI: 10.1142/9789811218026_0001
Google Scholar
[30]
H. Korbekandi, S. Iravani, and S. Abbasi, "Production of nanoparticles using organisms," Critical reviews in biotechnology, 2009, vol. 29, no. 4, p.279–306
DOI: 10.3109/07388550903062462
Google Scholar
[31]
P. A. Sundaram, R. Augustine, and M. Kannan, "Extracellular biosynthesis of iron oxide nanoparticles by Bacillus subtilis strains isolated from rhizosphere soil," Biotechnol. Bioprocess Engineering, 2012, vol. 17, p.835–840, 2012
DOI: 10.1007/s12257-011-0582-9
Google Scholar
[32]
A. Chauhan, J. Anand, V. Parkash, and N. Rai, "Biogenic synthesis: A sustainable approach for nanoparticles synthesis mediated by fungi," Inorganic and Nano-Metal Chemistry, 2023, vol. 53, no. 5, p.460–473
DOI: 10.1080/24701556.2021.2025078
Google Scholar
[33]
D. S. Mathew and R.-S. Juang, "An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions," Chemical engineering journal, 2007, vol. 129, no. 1–3, p.51–65
DOI: 10.1016/j.cej.2006.11.001
Google Scholar
[34]
R. K. Kaul, P. Kumar, U. Burman, P. Joshi, A. Agrawal, R. Raliya, J.C. Tarafdar, "Magnesium and iron nanoparticles production using microorganisms and various salts," Material Science, 2012, vol. 30, p.254–258
DOI: 10.2478/s13536-012-0028-x
Google Scholar
[35]
S. Saif, A. Tahir, and Y. Chen, "Green synthesis of iron nanoparticles and their environmental applications and implications," Nanomaterials, 2016, vol. 6, no. 11, p.209
DOI: 10.3390/nano6110209
Google Scholar
[36]
A. Monshi, M. R. Foroughi, and M. R. Monshi, Modified Scherrer equation to estimate more accurately nano-crystallite size using XRD. "World Journal of Nanoscience and Engineering, 2012, vol.2, 154 (2012)
DOI: 10.4236/wjnse.2012.23020
Google Scholar
[37]
R. Abu-Eittah and Z. Mobarak, "Absorption spectra of iron (III)-cannabidiolic acid solutions in organic solvents," Journal of Inorganic and Nuclear Chemistry, 1972, vol. 34, no. 7, p.2283–2293. https://doi.org/10.1016/0022-1902 (72)80164-7
DOI: 10.1016/0022-1902(72)80164-7
Google Scholar
[38]
E. Posnjak and H. E. Merwin, "The system, Fe2O3—SO3—H2O," Journal of the American Chemical Society, 1922, vol. 44, no. 9, p.1965–1994
DOI: 10.1021/ja01430a016
Google Scholar
[39]
A. Ghosh, S. Dutta, I. Mukherjee, S. Biswas, S. Chatterjee, and R. Saha, "Template-free synthesis of flower-shaped zero-valent iron nanoparticle: Role of hydroxyl group in controlling morphology and nitrate reduction," Advanced Powder Technology, 2017, vol. 28, no. 9, p.2256–2264, 2017
DOI: 10.1016/j.apt.2017.06.006
Google Scholar
[40]
S. Meneceur, H. Hemmami, A. Bouafia, S.E. Laouini, M.L. Tedjani, D. Berra, and M.S. Mahboub, Photocatalytic activity of iron oxide nanoparticles synthesized by different plant extracts for the degradation of diazo dyes Evans blue and Congo red. Biomass Conversion and Biorefinery, 2022, pp.1-16
DOI: 10.1007/s13399-022-02734-4
Google Scholar
[41]
D. Shi, M. E. Sadat, A. W. Dunn, and D. B. Mast, "Photo-fluorescent and magnetic properties of iron oxide nanoparticles for biomedical applications," Nanoscale, 2015, vol. 7, no. 18, p.8209–8232
DOI: 10.1039/C5NR01538C
Google Scholar
[42]
A. Gour and N. K. Jain, "Advances in green synthesis of nanoparticles", Artificial cells, Nanomedicine, and Biotechnology, 2019, vol.47 (2019) p.844–851
DOI: 10.1080/21691401.2019.1577878
Google Scholar
[43]
M. A. Dheyab, A. A. Aziz, M. S. Jameel, O. A. Noqta, P. M. Khaniabadi, and B. Mehrdel, "Simple rapid stabilization method through citric acid modification for magnetite nanoparticles," Scientific Reports, 2020, vol. 10, no. 1, p.10793
DOI: 10.1038/s41598-020-67869-8
Google Scholar
[44]
L. Maldonado-Camargo, M. Unni, and C. Rinaldi, "Magnetic characterization of iron oxide nanoparticles for biomedical applications," Biomedical Nanotechnology Methods Protocols, 2017, p.47–71
DOI: 10.1007/978-1-4939-6840-4_4
Google Scholar
[45]
A. A. Dakhel, "Dielectric and optical properties of samarium oxide thin films," Journal of alloys and compounds, 2004, vol. 365, no. 1–2, p.233–239. https://doi.org/10.1016/S0925-8388 (03)00615-7
DOI: 10.1016/s0925-8388(03)00615-7
Google Scholar
[46]
R. N. Panda, N. S. Gajbhiye, and G. Balaji, "Magnetic properties of interacting single domain Fe3O4 particles," Journal of alloys and compounds, 2001, vol. 326, no. 1–2, p.50–53. https://doi.org/10.1016/S0925-8388 (01)01225-7
DOI: 10.1016/s0925-8388(01)01225-7
Google Scholar
[47]
B. H. Stuart, Infrared spectroscopy: fundamentals and applications. John Wiley & Sons, 2004. ISBN 0-470-85427-8
Google Scholar
[48]
M. Stoia, R. Istratie, and C. Păcurariu, "Investigation of magnetite nanoparticles stability in air by thermal analysis and FTIR spectroscopy," Journal of Thermal Analytical Calorimetry, 2016, vol. 125, p.1185–1198. https:// doi.org//
DOI: 10.1007/s10973-016-5393-y
Google Scholar
[49]
R. Vijayakumar, Y. Koltypin, I. Felner, and A. Gedanken, "Sonochemical synthesis and characterization of pure nanometer-sized Fe3O4 particles," Materials Science and Engineering A, 2000, vol. 286, no. 1, p.101–105. https://doi.org/10.1016/S0921-5093 (00)00647-X
DOI: 10.1016/s0921-5093(00)00647-x
Google Scholar
[50]
L. M. Mahlaule-Glory, S. Mapetla, A. Makofane, M. M. Mathipa, and N. C. Hintsho-Mbita, "Biosynthesis of iron oxide nanoparticles for the degradation of methylene blue dye, sulfisoxazole antibiotic and removal of bacteria from real water," Heliyon, 2022, vol. 8, no. 9
DOI: 10.1016/j.heliyon.2022.e10536
Google Scholar
[51]
A. M. Atta, H. A. Al-Lohedan, and S. A. Al-Hussain, "Synthesis of stabilized myrrh-capped hydrocolloidal magnetite nanoparticles," Molecules, 2014, vol. 19, no. 8, p.11263–11278
DOI: 10.3390/molecules190811263
Google Scholar
[52]
J.-P. Jolivet, C. Chanéac, and E. Tronc, "Iron oxide chemistry. From molecular clusters to extended solid networks," Chemical Communications, 2004, no. 5, p.481–483
DOI: 10.1039/B304532N
Google Scholar
[53]
R. M. Cornell and U. Schwertmann, "The Fe Oxides: Structure, Properties," React. Occur. Uses VCH Weinh. 1996, vol. 573. https://lccn.loc.gov/96031931
Google Scholar
[54]
J. Xu, C. Ju, J. Sheng, F. Wang, Q. Zhang, G. Sun, and M. Sun, "Synthesis and characterization of magnetic nanoparticles and its application in lipase immobilization," Bulletin of the Korean Chemical Society, 2013, vol.34, no.8, p.2408–2412
DOI: 10.1016/j.jece.2022.107144
Google Scholar
[55]
I. Safitri, Y. G. Wibowo, and D. Rosarina, "Synthesis and characterization of magnetite (Fe3O4) nanoparticles from iron sand in Batanghari Beach," in IOP Conference Series: Materials Science and Engineering, IOP Publishing, 2021, p.012020
DOI: 10.1088/1757-899X/1011/1/012020
Google Scholar
[56]
M. M. Rashad, H. M. El-Sayed, M. Rasly, and M. I. Nasr, "Induction heating studies of magnetite nanospheres synthesized at room temperature for magnetic hyperthermia," Journal of Magnetism and Magnetic Materials, 2012, vol. 324, no. 23, p.4019–4023
DOI: 10.1016/j.jmmm.2012.07.010
Google Scholar