[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Stabilized Bare Superparamagnetic Iron Oxide Nanoparticles: Synthesis and Characterization

Article Preview

Abstract:

Iron is a ubiquitous element found on Earth's crust, existing in various forms, such as Magnetite (Fe3O4) and Hematite (α-Fe2O3). Magnetic iron oxide nanoparticles (MIONPs) have become increasingly popular because they possess unique properties such as high surface area to volume ratio, super-paramagnetic properties, photocatalytic properties, and economical synthesis methods. This study produced MIONPs using the co-precipitation method, stabilized by a molybdenum magnet. Two soluble iron salts (FeCl3.6H2O and FeSO4.7H2O) were reacted with 5N NH4OH solution at 80 °C in a nitrogen atmosphere. The MIONPs had a high saturation magnetization of 74.2emu/g, good crystallinity with crystalline spinel structured magnetite phase of iron oxide, high thermal stability depicted by 2.09 wt. % weight loss, and small particle sizes (6-25 nm). FTIR revealed a high-intensity peak at 546.28 cm-1, attributed to the Fe-O stretching bond. Furthermore, the study showed that the co-precipitation method could be used to produce nanoparticles with a wide range of properties that could be used for various applications. It is a promising solution for producing stabilized magnetic nanoparticles since it uses non-toxic reagents and a straightforward, secure technique. Therefore, it may be used to synthesize nanoparticles for targeted treatment, magnetic resonance imaging, drug delivery, water treatment purposes and environmental remediation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

81-96

Citation:

Online since:

September 2023

Export:

Price:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Bradu, A. Biswas, C. Nair, S. Sreevalsakumar, M. Patil, S. Kannampuzha, & A. V. Gopalakrishnan, "Recent advances in green technology and Industrial Revolution 4.0 for a sustainable future," Environmental Science and Pollution Research, 2022, 1-32.

DOI: 10.1007/s11356-022-20024-4

Google Scholar

[2] D. V. Singh et al., "Wonders of nanotechnology for remediation of polluted aquatic environs," Fresh Water Pollution Dynamics and Remediation, 2020, 319-339

DOI: 10.1007/978-981-13-8277-2_17

Google Scholar

[3] K. Yang and Y.-Q. Ma, "Computer simulation of the translocation of nanoparticles with different shapes across a lipid bilayer," Nature Nanotechnology, 2010, 5(8), 579-583.

DOI: 10.1038/nnano.2010.141

Google Scholar

[4] F. Trotta and A. Mele, "Nanomaterials: classification and properties," Nanosponges Synthesis and Applications, 2019, 1-26. ISBN 978-3-527-34100-9

DOI: 10.1002/9783527341009.ch1

Google Scholar

[5] V. Stone, B. Nowack, A. Baun, N. van den Brink, F. von der Kammer, M. Dusinska, R. Handy, S. Hankin, M. Hassellöv, E. Joner, and T.F. Fernandes, "Nanomaterials for environmental studies: classification, reference material issues, and strategies for physico-chemical characterisation," Science of the total environment, 2010, 408(7), pp.1745-1754.

DOI: 10.1016/j.scitotenv.2009.10.035

Google Scholar

[6] S. Khan, S. Mansoor, Z. Rafi, B. Kumari, A. Shoaib, M. Saeed, S. Alshehri, M.M. Ghoneim, M. Rahamathulla, U. Hani, and F. Shakeel, "A review on nanotechnology: Properties, applications, and mechanistic insights of cellular uptake mechanisms," Journal of Molecular Liquids, 2022, 348, p.118008.

DOI: 10.1016/j.molliq.2021.118008

Google Scholar

[7] F. Wang, Z. Xie, H. Zhang, C. Liu, and Y. Zhang, "Highly luminescent organosilane-functionalized carbon dots," Advanced Functional Materials, 2011, 21(6), pp.1027-1031.

DOI: 10.1002/adfm.201002279

Google Scholar

[8] P. Das, S. Ganguly, S. Banerjee, and N. C. Das, "Graphene based emergent nanolights: A short review on the synthesis, properties and application," Research on Chemical Intermediates, 2019, 45, pp.3823-3853.

DOI: 10.1007/s11164-019-03823-2

Google Scholar

[9] S. Solgi, M. S. Seyed Dorraji, S. F. Hosseini, M. H. Rasoulifard, I. Hajimiri, and A. Amani-Ghadim, "Improvement of microwave absorption properties of polyester coatings using NiFe2O4, X-doped g-C3N4 (X= S, P, and O), and MTiO3 (M= Fe, Mg, and Zn) nanofillers," Scientific Reports, 2021, 11(1), p.19339.

DOI: 10.1038/s41598-021-98666-6

Google Scholar

[10] M. S. Waghmode, A. B. Gunjal, J. A. Mulla, N. N. Patil, and N. N. Nawani, "Studies on the titanium dioxide nanoparticles: Biosynthesis, applications and remediation," .  Applied Sciences, 2019, 1(4), p.310.

DOI: 10.1007/s42452-019-0337-3

Google Scholar

[11] S. Wahyuningsih, A. H. Ramelan, and Y. R. Kristiawan, "Transformation of Magnetite (Fe3O4) and Maghemite (γ–Fe2O3) to α–Fe2O3 from Magnetic Phase of Glagah Iron Sand," Journal of Engineering Science, 2019, 15(1), pp.11-21.

DOI: 10.21315/jes2019.15.2

Google Scholar

[12] J. A. Morales-Morales, "Synthesis of hematite α-Fe2O3 nano powders by the controlled precipitation method," Cienc. En Desarro, 2017, vol. 8, no. 1, p.99–107. ISSN 0121-7488

DOI: 10.19053/01217488.v8.n1.2017.4494

Google Scholar

[13] P. Xu, G. Ming, D. Lian, C. Ling, S. Hu, and M. Hua, "Use of iron oxide nanomaterials in wastewater treatment: a review," A review. Science of the Total Environment, 2012, 424, 1–10.

DOI: 10.1016/j.scitotenv.2012.02.023

Google Scholar

[14] M. I. Anik, M. K. Hossain, I. Hossain, I. Ahmed, and R. M. Doha, "Biomedical applications of magnetic nanoparticles," in Magnetic Nanoparticle-Based Hybrid Materials, Elsevier, 2021, p.463–497

DOI: 10.1016/B978-0-12-823688-8.00002-8

Google Scholar

[15] G. M. Nair, T. Sajini, and B. Mathew, "Advanced green approaches for metal and metal oxide nanoparticles synthesis and their environmental applications," Talanta Open, 2022, 5, p.100080.

DOI: 10.1016/j.talo.2021.100080

Google Scholar

[16] W. Wu, Q. He, & C. Jiang, Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale research letters, 2008, 3(11), 397–415.

DOI: 10.1007/s11671-008-9174-9

Google Scholar

[17] H. Chen and Q. Miao, "Recent advances and attempts in synthesis of conjugated nanobelts," Journal of Physical Organic Chemistry, 2020, 33(12), p.e4145

DOI: 10.1002/poc.4145

Google Scholar

[18] N. Hanžić, T. Jurkin, A. Maksimović, and M. Gotić, "The synthesis of gold nanoparticles by a citrate-radiolytical method," Radiation Physical Chemistry, 2015, vol. 106, p.77–82

DOI: 10.1016/j.radphyschem.2014.07.006

Google Scholar

[19] K. S. Kim and T. H. Kim, "Nanofabrication by thermal plasma jets: From nanoparticles to low-dimensional nanomaterials," Journal of Applied Physics, 2019, 125(7), p.070901

DOI: 10.1063/1.5060977

Google Scholar

[20] B. G. Pollet and M. Ashokkumar, Introduction to ultrasound, sonochemistry and sonoelectrochemistry. Springer Nature, Springer Nature, 2019, pp.1-39. https://doi.org/10.1007.978-3-030-25863-7_1

Google Scholar

[21] G. Cravotto and P. Cintas, "Power ultrasound in organic synthesis: moving cavitational chemistry from academia to innovative and large-scale applications," Chemical Society Reviews, 2006, 35(2), pp.180-196

DOI: 10.1039/B503848K

Google Scholar

[22] K. Hachem, M.J. Ansari, R.O. Saleh, H.H. Kzar, M.E. Al-Gazally, U.S. Altimari, S.A. Hussein, H.T. Mohammed, A.T. Hammid, and E. Kianfar, Methods of Chemical Synthesis in the Synthesis of Nanomaterial and Nanoparticles by the Chemical Deposition Method: A Review. Bio Nanoscience, 2022, 12(3), pp.1032-1057

DOI: 10.1007/s12668-022-00996-w

Google Scholar

[23] M. K. Yoo, I. Y. Kim, E. M. Kim, H. J. Jeong, C. M. Lee, Y. Y. Jeong, C. S. Cho, Superparamagnetic iron oxide nanoparticles coated with galactose-carrying polymer for hepatocyte targeting. Journal of Biomedicine and Biotechnology, 2007, vol. 2007

DOI: 10.1155/2007/94740

Google Scholar

[24] S. K. Evans, O. N. Wesley, L. Koech, S. M. Nelana, and H. L. Rutto, "Structural Features of Cellulose and Cellulose Nanocrystals via In Situ Incorporation of Magnetic Iron Oxide Nanoparticles: Modification and Characterization," Coatings, 2022, vol. 13, no. 1, p.39

DOI: 10.3390/coatings13010039

Google Scholar

[25] I. Chamritski and G. Burns, "Infrared-and Raman-active phonons of magnetite, maghemite, and hematite: a computer simulation and spectroscopic study," Journal of Physical Chemistry B, 2005, vol. 109, no. 11, p.4965–4968

DOI: 10.1021/jp048748h

Google Scholar

[26] T. Tsuzuki and P. G. McCormick, "Nanopowders synthesized by mechanochemical processing," Journal of Materials Science, 2004, vol. 39, p.5143–5146

DOI: 10.1023/B:JMSC.0000039199.56155.f9

Google Scholar

[27] J. Belinha, J.C. Reis Campos, E. Fonseca, M.H. Figueiral Silva, M. Arcelina Marques, M.F. Gentil Costa, and S. Oliveira, Advances and Current Trends in Biomechanics: Proceedings of the 9th Portuguese Congress on Biomechanics, CNB2021, 19 - 20 February 2021, Porto, Portugal (1st ed.). CRC Press.

DOI: 10.1201/9781003217152

Google Scholar

[28] E. Grabias-Blicharz and W. Franus, "A critical review on mechanochemical processing of fly ash and fly ash-derived materials," Science of The Total Environment, 2022, vol. 860, p.160529

DOI: 10.1016/j.scitotenv.2022.160529

Google Scholar

[29] A. Sinha, J. Sakon, D.K. Roper, W.J. Li, A. Ghosh, H. Han, V.P. Zharov, and J.W. Kim, Nanoscale particles and multifunctional hybrid soft nanomaterials in bio/nanomedicine. In Soft Matter and Biomaterials on the Nanoscale: The WSPC Reference on Functional Nanomaterials—Part I Volume 4: Nanomedicine: Nanoscale Materials in Nano/BioMedicine, 2020, pp.1-58

DOI: 10.1142/9789811218026_0001

Google Scholar

[30] H. Korbekandi, S. Iravani, and S. Abbasi, "Production of nanoparticles using organisms," Critical reviews in biotechnology, 2009, vol. 29, no. 4, p.279–306

DOI: 10.3109/07388550903062462

Google Scholar

[31] P. A. Sundaram, R. Augustine, and M. Kannan, "Extracellular biosynthesis of iron oxide nanoparticles by Bacillus subtilis strains isolated from rhizosphere soil," Biotechnol. Bioprocess Engineering, 2012, vol. 17, p.835–840, 2012

DOI: 10.1007/s12257-011-0582-9

Google Scholar

[32] A. Chauhan, J. Anand, V. Parkash, and N. Rai, "Biogenic synthesis: A sustainable approach for nanoparticles synthesis mediated by fungi," Inorganic and Nano-Metal Chemistry, 2023, vol. 53, no. 5, p.460–473

DOI: 10.1080/24701556.2021.2025078

Google Scholar

[33] D. S. Mathew and R.-S. Juang, "An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions," Chemical engineering journal, 2007, vol. 129, no. 1–3, p.51–65

DOI: 10.1016/j.cej.2006.11.001

Google Scholar

[34] R. K. Kaul, P. Kumar, U. Burman, P. Joshi, A. Agrawal, R. Raliya, J.C. Tarafdar, "Magnesium and iron nanoparticles production using microorganisms and various salts," Material Science, 2012, vol. 30, p.254–258

DOI: 10.2478/s13536-012-0028-x

Google Scholar

[35] S. Saif, A. Tahir, and Y. Chen, "Green synthesis of iron nanoparticles and their environmental applications and implications," Nanomaterials, 2016, vol. 6, no. 11, p.209

DOI: 10.3390/nano6110209

Google Scholar

[36] A. Monshi, M. R. Foroughi, and M. R. Monshi, Modified Scherrer equation to estimate more accurately nano-crystallite size using XRD. "World Journal of Nanoscience and Engineering, 2012, vol.2, 154 (2012)

DOI: 10.4236/wjnse.2012.23020

Google Scholar

[37] R. Abu-Eittah and Z. Mobarak, "Absorption spectra of iron (III)-cannabidiolic acid solutions in organic solvents," Journal of Inorganic and Nuclear Chemistry, 1972, vol. 34, no. 7, p.2283–2293. https://doi.org/10.1016/0022-1902 (72)80164-7

DOI: 10.1016/0022-1902(72)80164-7

Google Scholar

[38] E. Posnjak and H. E. Merwin, "The system, Fe2O3—SO3—H2O," Journal of the American Chemical Society, 1922, vol. 44, no. 9, p.1965–1994

DOI: 10.1021/ja01430a016

Google Scholar

[39] A. Ghosh, S. Dutta, I. Mukherjee, S. Biswas, S. Chatterjee, and R. Saha, "Template-free synthesis of flower-shaped zero-valent iron nanoparticle: Role of hydroxyl group in controlling morphology and nitrate reduction," Advanced Powder Technology, 2017, vol. 28, no. 9, p.2256–2264, 2017

DOI: 10.1016/j.apt.2017.06.006

Google Scholar

[40] S. Meneceur, H. Hemmami, A. Bouafia, S.E. Laouini, M.L. Tedjani, D. Berra, and M.S. Mahboub, Photocatalytic activity of iron oxide nanoparticles synthesized by different plant extracts for the degradation of diazo dyes Evans blue and Congo red. Biomass Conversion and Biorefinery, 2022, pp.1-16

DOI: 10.1007/s13399-022-02734-4

Google Scholar

[41] D. Shi, M. E. Sadat, A. W. Dunn, and D. B. Mast, "Photo-fluorescent and magnetic properties of iron oxide nanoparticles for biomedical applications," Nanoscale, 2015, vol. 7, no. 18, p.8209–8232

DOI: 10.1039/C5NR01538C

Google Scholar

[42] A. Gour and N. K. Jain, "Advances in green synthesis of nanoparticles", Artificial cells, Nanomedicine, and Biotechnology, 2019, vol.47 (2019) p.844–851

DOI: 10.1080/21691401.2019.1577878

Google Scholar

[43] M. A. Dheyab, A. A. Aziz, M. S. Jameel, O. A. Noqta, P. M. Khaniabadi, and B. Mehrdel, "Simple rapid stabilization method through citric acid modification for magnetite nanoparticles," Scientific Reports, 2020, vol. 10, no. 1, p.10793

DOI: 10.1038/s41598-020-67869-8

Google Scholar

[44] L. Maldonado-Camargo, M. Unni, and C. Rinaldi, "Magnetic characterization of iron oxide nanoparticles for biomedical applications," Biomedical Nanotechnology Methods Protocols, 2017, p.47–71

DOI: 10.1007/978-1-4939-6840-4_4

Google Scholar

[45] A. A. Dakhel, "Dielectric and optical properties of samarium oxide thin films," Journal of alloys and compounds, 2004, vol. 365, no. 1–2, p.233–239. https://doi.org/10.1016/S0925-8388 (03)00615-7

DOI: 10.1016/s0925-8388(03)00615-7

Google Scholar

[46] R. N. Panda, N. S. Gajbhiye, and G. Balaji, "Magnetic properties of interacting single domain Fe3O4 particles," Journal of alloys and compounds, 2001, vol. 326, no. 1–2, p.50–53. https://doi.org/10.1016/S0925-8388 (01)01225-7

DOI: 10.1016/s0925-8388(01)01225-7

Google Scholar

[47] B. H. Stuart, Infrared spectroscopy: fundamentals and applications. John Wiley & Sons, 2004. ISBN 0-470-85427-8

Google Scholar

[48] M. Stoia, R. Istratie, and C. Păcurariu, "Investigation of magnetite nanoparticles stability in air by thermal analysis and FTIR spectroscopy," Journal of Thermal Analytical Calorimetry, 2016, vol. 125, p.1185–1198. https:// doi.org//

DOI: 10.1007/s10973-016-5393-y

Google Scholar

[49] R. Vijayakumar, Y. Koltypin, I. Felner, and A. Gedanken, "Sonochemical synthesis and characterization of pure nanometer-sized Fe3O4 particles," Materials Science and Engineering A, 2000, vol. 286, no. 1, p.101–105. https://doi.org/10.1016/S0921-5093 (00)00647-X

DOI: 10.1016/s0921-5093(00)00647-x

Google Scholar

[50] L. M. Mahlaule-Glory, S. Mapetla, A. Makofane, M. M. Mathipa, and N. C. Hintsho-Mbita, "Biosynthesis of iron oxide nanoparticles for the degradation of methylene blue dye, sulfisoxazole antibiotic and removal of bacteria from real water," Heliyon, 2022, vol. 8, no. 9

DOI: 10.1016/j.heliyon.2022.e10536

Google Scholar

[51] A. M. Atta, H. A. Al-Lohedan, and S. A. Al-Hussain, "Synthesis of stabilized myrrh-capped hydrocolloidal magnetite nanoparticles," Molecules, 2014, vol. 19, no. 8, p.11263–11278

DOI: 10.3390/molecules190811263

Google Scholar

[52] J.-P. Jolivet, C. Chanéac, and E. Tronc, "Iron oxide chemistry. From molecular clusters to extended solid networks," Chemical Communications, 2004, no. 5, p.481–483

DOI: 10.1039/B304532N

Google Scholar

[53] R. M. Cornell and U. Schwertmann, "The Fe Oxides: Structure, Properties," React. Occur. Uses VCH Weinh. 1996, vol. 573. https://lccn.loc.gov/96031931

Google Scholar

[54] J. Xu, C. Ju, J. Sheng, F. Wang, Q. Zhang, G. Sun, and M. Sun, "Synthesis and characterization of magnetic nanoparticles and its application in lipase immobilization," Bulletin of the Korean Chemical Society, 2013, vol.34, no.8, p.2408–2412

DOI: 10.1016/j.jece.2022.107144

Google Scholar

[55] I. Safitri, Y. G. Wibowo, and D. Rosarina, "Synthesis and characterization of magnetite (Fe3O4) nanoparticles from iron sand in Batanghari Beach," in IOP Conference Series: Materials Science and Engineering, IOP Publishing, 2021, p.012020

DOI: 10.1088/1757-899X/1011/1/012020

Google Scholar

[56] M. M. Rashad, H. M. El-Sayed, M. Rasly, and M. I. Nasr, "Induction heating studies of magnetite nanospheres synthesized at room temperature for magnetic hyperthermia," Journal of Magnetism and Magnetic Materials, 2012, vol. 324, no. 23, p.4019–4023

DOI: 10.1016/j.jmmm.2012.07.010

Google Scholar