[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Comparative Study of Electric Machines for Stirling Generator Application

Article Preview

Abstract:

The choice of a machine for an application and a given specification remains a complex problem. This will involve, for example, bringing together criteria such as: performance, space saving, economical, reliable, little acoustic noise and others. The best machine selection to fulfill all constraints is an important step for the project to be realized. This work focus on Stirling Engine based Generator and study all types of rotating machines that can be employed for maximum electric power production. Analytical electromagnetic models where developed for all types of rotating machines that satisfied minimum requirement for the project by solving Maxwell equations. The purpose is to develop the design model and combine electromagnetic and thermal study of the machines. Finite Element Method is used to compare the performances of the generators for the best choice. Results show that for applications not requiring bigger output power, the major criteria for the selection is the optimal magnetic induction created by the inducer in the stationary part of the machine. For application such as Stirling generators, permanent magnet (PM) machine satisfy many comparison criteria such as maximum power at low speed, torque density, high efficiency. Beyond exposing a selection method for a project, this work lay down a step-by-step method for engineers and scientists for the crucial stage of design and conception work

You might also be interested in these eBooks

Info:

Periodical:

Pages:

73-92

Citation:

Online since:

November 2021

Export:

Price:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Laazaar and N. Boutammachte, New approach of decision support method for Stirling engine type choice towards a better exploitation of renewable energies,, Energy Convers. Manag., vol. 223, p.113326, Nov. 2020,.

DOI: 10.1016/j.enconman.2020.113326

Google Scholar

[2] W. Uchman, J. Kotowicz, and K. F. Li, Evaluation of a micro-cogeneration unit with integrated electrical energy storage for residential application,, Appl. Energy, vol. 282, p.116196, Jan. 2021,.

DOI: 10.1016/j.apenergy.2020.116196

Google Scholar

[3] H. Ding, J. Li, and D. Heydarian, Energy, exergy, exergoeconomic, and environmental analysis of a new biomass-driven cogeneration system,, Sustain. Energy Technol. Assess., vol. 45, p.101044, Jun. 2021,.

DOI: 10.1016/j.seta.2021.101044

Google Scholar

[4] L. Acampora, G. Continillo, F. S. Marra, F. Miccio, and M. Urciuolo, Development of an experimental test rig for cogeneration based on a Stirling engine and a biofuel burner,, Int. J. Energy Res., vol. 44, no. 15, p.12559–12571, 2020,.

DOI: 10.1002/er.5663

Google Scholar

[5] W. Uchman, J. Kotowicz, and L. Remiorz, An Experimental Data-Driven Model of a Micro-Cogeneration Installation for Time-Domain Simulation and System Analysis,, Energies, vol. 13, no. 11, Art. no. 11, Jan. 2020,.

DOI: 10.3390/en13112759

Google Scholar

[6] J. Chen, X. Li, Y. Dai, and C.-H. Wang, Energetic, economic, and environmental assessment of a Stirling engine based gasification CCHP system,, Appl. Energy, vol. 281, p.116067, Jan. 2021,.

DOI: 10.1016/j.apenergy.2020.116067

Google Scholar

[7] A. Yerbury, A. Coote, V. Garaniya, and H. Yu, Design of a Solar Stirling Engine for Marine and Offshore Applications,, Int. J. Renew. Energy Technol., vol. 7, p.1–45, Apr. 2015,.

DOI: 10.1504/ijret.2016.073400

Google Scholar

[8] S. Zmudzki, Feasibility study into Stirling engines application in ship's energy systems,, WIT Trans. Built Environ., vol. 45, 1999, [Online]. Available: www.witpress.com.

Google Scholar

[9] R. US and K. T, Improving The Efficiency Of Marine Power Plant Using Stirling Engine In Waste Heat Recovery Systems,, Int. J. Innov. Res. Dev., vol. 1, no. 10, p.18, Dec. (2012).

Google Scholar

[10] J.-B. Bouvenot et al., Modélisation numérique d'une solution de micro cogénération biomasse.,, Congrès Fr. Ais Therm. Lyon, (2014).

Google Scholar

[11] W. T. Beale and N. W. Lane, A Biomass-Fired 1 kWe Stirling Engine Generator and Its Applications in South Africa, Date is copyright Date; Reprint Edition edition. Arch, (1999).

Google Scholar

[12] K. Mahkamov, Design Improvements to a Biomass Stirling Engine Using Mathematical Analysis and 3D CFD Modeling,, J. Energy Resour. Technol., vol. 128, no. 3, p.203–215, Sep. 2005,.

DOI: 10.1115/1.2213273

Google Scholar

[13] S. Parmigiani, D. Zani, C. Invernizzi, A. Mazzù, V. Villa, and A. Lezzi, A biomass powered Ringbom-Stirling engine for developing countries: a low-budget solution for distributed electricity generation,, Renew. Energy Power Qual. J., vol. 1, p.659–662, 2010,.

DOI: 10.24084/repqj08.432

Google Scholar

[14] P. H. Shaikh, A. A. Lashari, Z. H. Leghari, and Z. A. Memon, Techno-enviro-economic assessment of a stand-alone parabolic solar dish stirling system for electricity generation,, Int. J. Energy Res., vol. 45, no. 7, p.10250–10270, 2021,.

DOI: 10.1002/er.6513

Google Scholar

[15] A. Buscemi, V. Lo Brano, C. Chiaruzzi, G. Ciulla, and C. Kalogeri, A validated energy model of a solar dish-Stirling system considering the cleanliness of mirrors,, Appl. Energy, vol. 260, p.114378, Feb. 2020,.

DOI: 10.1016/j.apenergy.2019.114378

Google Scholar

[16] M. E. Zayed et al., Performance prediction and techno-economic analysis of solar dish/stirling system for electricity generation,, Appl. Therm. Eng., vol. 164, p.114427, Jan. 2020,.

DOI: 10.1016/j.applthermaleng.2019.114427

Google Scholar

[17] M. E. Zayed, J. Zhao, A. H. Elsheikh, Z. Zhao, S. Zhong, and A. E. Kabeel, Comprehensive parametric analysis, design and performance assessment of a solar dish/Stirling system,, Process Saf. Environ. Prot., vol. 146, p.276–291, Feb. 2021,.

DOI: 10.1016/j.psep.2020.09.007

Google Scholar

[18] S. Md. A. Sufian, D. Baidya, M. Ahsan Ullah, and P. Mazumder, Design of a Stirling Engine to Generate Green Energy in Rural Areas of Bangladesh,, Sep. 2014.

DOI: 10.1109/icget.2014.6966656

Google Scholar

[19] M. Babaelahi and H. Sayyaadi, Differential Polytropic Model for Simulation of Stirling Engines Considering Various Regenerators Models,, Modares Mech. Eng., vol. 15, no. 2, p.187–197, Apr. (2015).

Google Scholar

[20] K. Yanaga, S. Qiu, P. K. Yadav, and L. Solomon, Experimental Study of Stirling Engine Regenerator Efficiency and Pressure Loss,, in 2018 International Energy Conversion Engineering Conference, American Institute of Aeronautics and Astronautics.

DOI: 10.2514/6.2018-4501

Google Scholar

[21] N. A. Prashanth and P. Sujatha, Commonly used Wind Generator Systems: A Comparison Note,, ResearchGate, doi: http://dx.doi.org/10.11591/ijeecs.v7.i2.pp.299-311.

Google Scholar

[22] B. Babu and S. Divya, Comparative study of different types of generators used in wind turbine and reactive power compensation,, (2017).

Google Scholar

[23] N. Hashemnia and B. Asaei, Comparative study of using different electric motors in the electric vehicles,, in 2008 18th International Conference on Electrical Machines, Sep. 2008, p.1–5.

DOI: 10.1109/icelmach.2008.4800157

Google Scholar

[24] M. Zeraoulia, M. E. H. Benbouzid, and D. Diallo, Electric Motor Drive Selection Issues for HEV Propulsion Systems: A Comparative Study,, IEEE Trans. Veh. Technol., vol. 55, no. 6, p.1756–1764, Nov. 2006,.

DOI: 10.1109/tvt.2006.878719

Google Scholar

[25] W. Cai, Comparison and review of electric machines for integrated starter alternator applications,, in Conference Record of the 2004 IEEE Industry Applications Conference, 2004. 39th IAS Annual Meeting., Oct. 2004, vol. 1, p.393.

DOI: 10.1109/ias.2004.1348437

Google Scholar

[26] D. D. Lucache, Survey of some automotive integrated-starter-generators and their control,, p.368–376, Jan. (2008).

Google Scholar

[27] E. Ganev, Selecting the Best Electric Machines for Electrical Power-Generation Systems: High-performance solutions for aerospace More electric architectures.,, IEEE Electrification Mag., vol. 2, no. 4, p.13–22, Dec. 2014,.

DOI: 10.1109/mele.2014.2364731

Google Scholar

[28] X. Zhang, C. L. Bowman, T. C. O'Connell, and K. S. Haran, Large electric machines for aircraft electric propulsion,, IET Electr. Power Appl., vol. 12, no. 6, p.767–779, 2018,.

DOI: 10.1049/iet-epa.2017.0639

Google Scholar

[29] H. T. Arat, Numerical Comparison of Different Electric Motors (IM and PM) effects on a Hybrid Electric Vehicle,, Avrupa Bilim Ve Teknol. Derg., no. 14, Art. no. 14, Dec. 2018,.

DOI: 10.31590/ejosat.494127

Google Scholar

[30] Z. Q. Zhu, W. Q. Chu, and Y. Guan, Quantitative comparison of electromagnetic performance of electrical machines for HEVs/EVs,, CES Trans. Electr. Mach. Syst., vol. 1, no. 1, p.37–47, Mar. 2017,.

DOI: 10.23919/tems.2017.7911107

Google Scholar

[31] J. K. Nøland, M. Leandro, J. A. Suul, and M. Molinas, High-Power Machines and Starter-Generator Topologies for More Electric Aircraft: A Technology Outlook,, IEEE Access, vol. 8, p.130104–130123, 2020,.

DOI: 10.1109/access.2020.3007791

Google Scholar

[32] D. Bang, H. Polinder, G. S. Shrestha, and J. Ferreira, Review of generator systems for direct-drive wind turbines,, Apr. (2008).

DOI: 10.1109/epewecs.2008.4497321

Google Scholar

[33] G. Pellegrino, A. Vagati, B. Boazzo, and P. Guglielmi, Comparison of Induction and PM Synchronous Motor Drives for EV Application Including Design Examples,, IEEE Trans. Ind. Appl., vol. 48, no. 6, p.2322–2332, Nov. 2012,.

DOI: 10.1109/tia.2012.2227092

Google Scholar

[34] Z. Yang, F. Shang, I. P. Brown, and M. Krishnamurthy, Comparative Study of Interior Permanent Magnet, Induction, and Switched Reluctance Motor Drives for EV and HEV Applications,, IEEE Trans. Transp. Electrification, vol. 1, no. 3, p.245–254, Oct. 2015,.

DOI: 10.1109/tte.2015.2470092

Google Scholar

[35] A. Lebsir, A. Bentounsi, M. Benbouzid, and H. Mangel, Electric Generators Fitted to Wind Turbine Systems: An Up-to-Date Comparative Study,, J. Electr. Syst., vol. 11, no. 3, p.281–295, Sep. (2015).

Google Scholar

[36] A. Lebsir, Performances comparées de machines synchrones à aimants permanents et à réluctance variable associées à une chaine de conversion d'energie renouvelable,, (2016).

Google Scholar

[37] B. Multon and C. Jacques, Comparaison de deux moteurs électriques autopilotés : le moteur synchrone à aimants permanents et le moteur à reluctance variable à double saillance,, Congrès Réal. Perspect. Véhicule Électr., p.295–302, (1993).

Google Scholar

[38] G. Luthra, Comparison of Characteristics of Various Motor Drives Currently Used in Electric Vehicle Propulsion System,, in SARC-ACN International Conference, New-Delhi, India, Mar. 2017, p.4.

Google Scholar

[39] A. Omekanda, B. Lequesne, H. Klode, S. Gopalakrishnan, and I. Husain, Switched reluctance and permanent magnet brushless motors in highly dynamic situations: A comparison in the context of electric brakes,, Ind. Appl. Mag. IEEE, vol. 15, p.35–43, Sep. 2009,.

DOI: 10.1109/mias.2009.932595

Google Scholar

[40] P. Bhatt, H. Mehar, and M. Sahajwani, Electrical Motors for Electric Vehicle – A Comparative Study,, Social Science Research Network, Rochester, NY, SSRN Scholarly Paper ID 3364887, Apr. 2019.

DOI: 10.2139/ssrn.3364887

Google Scholar

[41] E. Afjei and H. Torkaman, Comparison of two types of hybrid motor/generator,, in SPEEDAM 2010, Jun. 2010, p.982–986.

DOI: 10.1109/speedam.2010.5544843

Google Scholar

[42] Y. Amirat, M. Benbouzid, B. Bensaker, and R. Wamkeue, Generators for Wind Energy Conversion Systems: State of the Art and Coming Attractions,, J. Electr. Syst., vol. 3, (2007).

DOI: 10.1109/iemdc.2007.383639

Google Scholar

[43] M. Cheng and Y. Zhu, The state of the art of wind energy conversion systems and technologies: A review,, Energy Convers. Manag., vol. 88, p.332–347, 2014, doi: https://doi.org/10.1016/j.enconman.2014.08.037.

DOI: 10.1016/j.enconman.2014.08.037

Google Scholar

[44] T. Finken, M. Felden, and K. Hameyer, Comparison and design of different electrical machine types regarding their applicability in hybrid electrical vehicles,, Oct. 2008, p.1–5.

DOI: 10.1109/icelmach.2008.4800044

Google Scholar

[45] M. Yıldırım, M. Polat, and H. Kurum, A survey on comparison of electric motor types and drives used for electric vehicles,, Sep. 2014, p.218–223.

DOI: 10.1109/epepemc.2014.6980715

Google Scholar

[46] J. Nurdin, F. Napitupulu, Ilmi, and H. Ambarita, Manufacturing and testing prototype of a gamma type Stirling engine for micro-CHP application,, IOP Conf. Ser. Mater. Sci. Eng., vol. 725, p.012016, 2020,.

DOI: 10.1088/1757-899x/725/1/012016

Google Scholar

[47] J. G. de la Bat, R. Dobson, T. Harms, and A. Bell, Simulation, manufacture and experimental validation of a novel single-acting free-piston Stirling engine electric generator,, Appl. Energy, vol. 263, 2020,.

DOI: 10.1016/j.apenergy.2020.114585

Google Scholar

[48] H. Shabgard, A. Faghri, T. L. Bergman, and C. E. Andraka, Numerical Simulation of Heat Pipe-Assisted Latent Heat Thermal Energy Storage Unit for Dish-Stirling Systems,, J. Sol. Energy Eng., vol. 136, no. 2, p.021025, May 2014,.

DOI: 10.1115/imece2013-65487

Google Scholar

[49] Y. Kadri and H. Hadj Abdallah, Performance evaluation of a stand-alone solar dish Stirling system for power generation suitable for off-grid rural electrification,, Energy Convers. Manag., vol. 129, p.140–156, Dec. 2016,.

DOI: 10.1016/j.enconman.2016.10.024

Google Scholar

[50] A. Mohammadnia, B. Ziapour, F. Sedaghati, L. Rosendahl, and A. Rezania, Utilizing Thermoelectric Generator as Cavity Temperature Controller for Temperature Management in Dish-Stirling Engine,, Appl. Therm. Eng., vol. 165, p.114568, 2019,.

DOI: 10.1016/j.applthermaleng.2019.114568

Google Scholar

[51] R. Li, Applications of Stirling engine in sustainable development : context-experimental and numerical study,, thesis, Paris 10, 2017. Accessed: Oct. 22, 2018. [Online]. Available: http://www.theses.fr/2017PA100066.

Google Scholar

[52] S. A. Shufat, E. Kurt, C. Cinar, F. Aksoy, A. Hançerlioğulları, and H. Solmaz, Exploration of a Stirling engine and generator combination for air and helium media,, Appl. Therm. Eng., vol. 150, no. October 2018, p.738–749, 2019,.

DOI: 10.1016/j.applthermaleng.2019.01.053

Google Scholar

[53] M. H. Mike, Stirling Engine for Solar Thermal Electric Generation,, PhD Thesis, University of California, Berkeley, 2018. [Online]. Available: http://www2.eecs.berkeley.edu/Pubs/TechRpts/2018/EECS-2018-15.html.

Google Scholar

[54] T. T. Dang, Optimisation de l'ensemble convertisseur-générateur-commande intégré à un système de micro-cogénération thermo-mécano-électrique,, phdthesis, École normale supérieure de Cachan - ENS Cachan, 2013. Accessed: Sep. 04, 2018. [Online]. Available: https://tel.archives-ouvertes.fr/tel-01063146/document.

Google Scholar

[55] L. Dall'Ora, Analysis and Design of a Linear Tubular Electric Machine for Free-piston Stirling Micro-cogeneration Systems,, Ph.D. thesis, Universita Degli Studi Di PADOVA, 2014. Accessed: Sep. 25, 2018. [Online]. Available: http://paduaresearch.cab.unipd.it/6366/.

Google Scholar

[56] S. Bhattacharjee, Analysis of a Three Phase Induction Motor Directly from Maxwell's Equations,, Am. J. Phys., vol. 80, Sep. 2011,.

Google Scholar

[57] F. Leon and S. Purushothaman, Closed-form computation of electromagnetic fields in induction motors,, Int. J. Power Energy Syst., vol. 33, Jan. 2013,.

DOI: 10.2316/journal.203.2013.2.203-5079

Google Scholar

[58] Z. Q. Zhu, K. Ng, N. Schofield, and D. Howe, Improved analytical modelling of rotor eddy current loss in brushless machines equipped with surface-mounted permanent magnets,, IEE Proc. - Electr. Power Appl., vol. 151, no. 6, p.641–650, Nov. 2004,.

DOI: 10.1049/ip-epa:20040546

Google Scholar

[59] A. Marrocco, Analyse numerique des problèmes d'électrotechnique,, Ann Sc Math Qué., vol. vol1, no. 2, p.271–296, (1977).

Google Scholar

[60] C. Huynh, L. Zheng, and D. Acharya, Losses in High Speed Permanent Magnet Machines Used in Microturbine Applications,, J. Eng. Gas Turbines Power, vol. 131, no. 2, Mar. 2009,.

DOI: 10.1115/1.2982151

Google Scholar

[61] P. Juha, J. Tapani, and H. Valéria, Design of Rotating Electrical Machines. Chichester, West Sussex, United Kingdom ; Hoboken, NJ: Wiley-Blackwell, (2008).

Google Scholar