[1]
K. Laazaar and N. Boutammachte, New approach of decision support method for Stirling engine type choice towards a better exploitation of renewable energies,, Energy Convers. Manag., vol. 223, p.113326, Nov. 2020,.
DOI: 10.1016/j.enconman.2020.113326
Google Scholar
[2]
W. Uchman, J. Kotowicz, and K. F. Li, Evaluation of a micro-cogeneration unit with integrated electrical energy storage for residential application,, Appl. Energy, vol. 282, p.116196, Jan. 2021,.
DOI: 10.1016/j.apenergy.2020.116196
Google Scholar
[3]
H. Ding, J. Li, and D. Heydarian, Energy, exergy, exergoeconomic, and environmental analysis of a new biomass-driven cogeneration system,, Sustain. Energy Technol. Assess., vol. 45, p.101044, Jun. 2021,.
DOI: 10.1016/j.seta.2021.101044
Google Scholar
[4]
L. Acampora, G. Continillo, F. S. Marra, F. Miccio, and M. Urciuolo, Development of an experimental test rig for cogeneration based on a Stirling engine and a biofuel burner,, Int. J. Energy Res., vol. 44, no. 15, p.12559–12571, 2020,.
DOI: 10.1002/er.5663
Google Scholar
[5]
W. Uchman, J. Kotowicz, and L. Remiorz, An Experimental Data-Driven Model of a Micro-Cogeneration Installation for Time-Domain Simulation and System Analysis,, Energies, vol. 13, no. 11, Art. no. 11, Jan. 2020,.
DOI: 10.3390/en13112759
Google Scholar
[6]
J. Chen, X. Li, Y. Dai, and C.-H. Wang, Energetic, economic, and environmental assessment of a Stirling engine based gasification CCHP system,, Appl. Energy, vol. 281, p.116067, Jan. 2021,.
DOI: 10.1016/j.apenergy.2020.116067
Google Scholar
[7]
A. Yerbury, A. Coote, V. Garaniya, and H. Yu, Design of a Solar Stirling Engine for Marine and Offshore Applications,, Int. J. Renew. Energy Technol., vol. 7, p.1–45, Apr. 2015,.
DOI: 10.1504/ijret.2016.073400
Google Scholar
[8]
S. Zmudzki, Feasibility study into Stirling engines application in ship's energy systems,, WIT Trans. Built Environ., vol. 45, 1999, [Online]. Available: www.witpress.com.
Google Scholar
[9]
R. US and K. T, Improving The Efficiency Of Marine Power Plant Using Stirling Engine In Waste Heat Recovery Systems,, Int. J. Innov. Res. Dev., vol. 1, no. 10, p.18, Dec. (2012).
Google Scholar
[10]
J.-B. Bouvenot et al., Modélisation numérique d'une solution de micro cogénération biomasse.,, Congrès Fr. Ais Therm. Lyon, (2014).
Google Scholar
[11]
W. T. Beale and N. W. Lane, A Biomass-Fired 1 kWe Stirling Engine Generator and Its Applications in South Africa, Date is copyright Date; Reprint Edition edition. Arch, (1999).
Google Scholar
[12]
K. Mahkamov, Design Improvements to a Biomass Stirling Engine Using Mathematical Analysis and 3D CFD Modeling,, J. Energy Resour. Technol., vol. 128, no. 3, p.203–215, Sep. 2005,.
DOI: 10.1115/1.2213273
Google Scholar
[13]
S. Parmigiani, D. Zani, C. Invernizzi, A. Mazzù, V. Villa, and A. Lezzi, A biomass powered Ringbom-Stirling engine for developing countries: a low-budget solution for distributed electricity generation,, Renew. Energy Power Qual. J., vol. 1, p.659–662, 2010,.
DOI: 10.24084/repqj08.432
Google Scholar
[14]
P. H. Shaikh, A. A. Lashari, Z. H. Leghari, and Z. A. Memon, Techno-enviro-economic assessment of a stand-alone parabolic solar dish stirling system for electricity generation,, Int. J. Energy Res., vol. 45, no. 7, p.10250–10270, 2021,.
DOI: 10.1002/er.6513
Google Scholar
[15]
A. Buscemi, V. Lo Brano, C. Chiaruzzi, G. Ciulla, and C. Kalogeri, A validated energy model of a solar dish-Stirling system considering the cleanliness of mirrors,, Appl. Energy, vol. 260, p.114378, Feb. 2020,.
DOI: 10.1016/j.apenergy.2019.114378
Google Scholar
[16]
M. E. Zayed et al., Performance prediction and techno-economic analysis of solar dish/stirling system for electricity generation,, Appl. Therm. Eng., vol. 164, p.114427, Jan. 2020,.
DOI: 10.1016/j.applthermaleng.2019.114427
Google Scholar
[17]
M. E. Zayed, J. Zhao, A. H. Elsheikh, Z. Zhao, S. Zhong, and A. E. Kabeel, Comprehensive parametric analysis, design and performance assessment of a solar dish/Stirling system,, Process Saf. Environ. Prot., vol. 146, p.276–291, Feb. 2021,.
DOI: 10.1016/j.psep.2020.09.007
Google Scholar
[18]
S. Md. A. Sufian, D. Baidya, M. Ahsan Ullah, and P. Mazumder, Design of a Stirling Engine to Generate Green Energy in Rural Areas of Bangladesh,, Sep. 2014.
DOI: 10.1109/icget.2014.6966656
Google Scholar
[19]
M. Babaelahi and H. Sayyaadi, Differential Polytropic Model for Simulation of Stirling Engines Considering Various Regenerators Models,, Modares Mech. Eng., vol. 15, no. 2, p.187–197, Apr. (2015).
Google Scholar
[20]
K. Yanaga, S. Qiu, P. K. Yadav, and L. Solomon, Experimental Study of Stirling Engine Regenerator Efficiency and Pressure Loss,, in 2018 International Energy Conversion Engineering Conference, American Institute of Aeronautics and Astronautics.
DOI: 10.2514/6.2018-4501
Google Scholar
[21]
N. A. Prashanth and P. Sujatha, Commonly used Wind Generator Systems: A Comparison Note,, ResearchGate, doi: http://dx.doi.org/10.11591/ijeecs.v7.i2.pp.299-311.
Google Scholar
[22]
B. Babu and S. Divya, Comparative study of different types of generators used in wind turbine and reactive power compensation,, (2017).
Google Scholar
[23]
N. Hashemnia and B. Asaei, Comparative study of using different electric motors in the electric vehicles,, in 2008 18th International Conference on Electrical Machines, Sep. 2008, p.1–5.
DOI: 10.1109/icelmach.2008.4800157
Google Scholar
[24]
M. Zeraoulia, M. E. H. Benbouzid, and D. Diallo, Electric Motor Drive Selection Issues for HEV Propulsion Systems: A Comparative Study,, IEEE Trans. Veh. Technol., vol. 55, no. 6, p.1756–1764, Nov. 2006,.
DOI: 10.1109/tvt.2006.878719
Google Scholar
[25]
W. Cai, Comparison and review of electric machines for integrated starter alternator applications,, in Conference Record of the 2004 IEEE Industry Applications Conference, 2004. 39th IAS Annual Meeting., Oct. 2004, vol. 1, p.393.
DOI: 10.1109/ias.2004.1348437
Google Scholar
[26]
D. D. Lucache, Survey of some automotive integrated-starter-generators and their control,, p.368–376, Jan. (2008).
Google Scholar
[27]
E. Ganev, Selecting the Best Electric Machines for Electrical Power-Generation Systems: High-performance solutions for aerospace More electric architectures.,, IEEE Electrification Mag., vol. 2, no. 4, p.13–22, Dec. 2014,.
DOI: 10.1109/mele.2014.2364731
Google Scholar
[28]
X. Zhang, C. L. Bowman, T. C. O'Connell, and K. S. Haran, Large electric machines for aircraft electric propulsion,, IET Electr. Power Appl., vol. 12, no. 6, p.767–779, 2018,.
DOI: 10.1049/iet-epa.2017.0639
Google Scholar
[29]
H. T. Arat, Numerical Comparison of Different Electric Motors (IM and PM) effects on a Hybrid Electric Vehicle,, Avrupa Bilim Ve Teknol. Derg., no. 14, Art. no. 14, Dec. 2018,.
DOI: 10.31590/ejosat.494127
Google Scholar
[30]
Z. Q. Zhu, W. Q. Chu, and Y. Guan, Quantitative comparison of electromagnetic performance of electrical machines for HEVs/EVs,, CES Trans. Electr. Mach. Syst., vol. 1, no. 1, p.37–47, Mar. 2017,.
DOI: 10.23919/tems.2017.7911107
Google Scholar
[31]
J. K. Nøland, M. Leandro, J. A. Suul, and M. Molinas, High-Power Machines and Starter-Generator Topologies for More Electric Aircraft: A Technology Outlook,, IEEE Access, vol. 8, p.130104–130123, 2020,.
DOI: 10.1109/access.2020.3007791
Google Scholar
[32]
D. Bang, H. Polinder, G. S. Shrestha, and J. Ferreira, Review of generator systems for direct-drive wind turbines,, Apr. (2008).
DOI: 10.1109/epewecs.2008.4497321
Google Scholar
[33]
G. Pellegrino, A. Vagati, B. Boazzo, and P. Guglielmi, Comparison of Induction and PM Synchronous Motor Drives for EV Application Including Design Examples,, IEEE Trans. Ind. Appl., vol. 48, no. 6, p.2322–2332, Nov. 2012,.
DOI: 10.1109/tia.2012.2227092
Google Scholar
[34]
Z. Yang, F. Shang, I. P. Brown, and M. Krishnamurthy, Comparative Study of Interior Permanent Magnet, Induction, and Switched Reluctance Motor Drives for EV and HEV Applications,, IEEE Trans. Transp. Electrification, vol. 1, no. 3, p.245–254, Oct. 2015,.
DOI: 10.1109/tte.2015.2470092
Google Scholar
[35]
A. Lebsir, A. Bentounsi, M. Benbouzid, and H. Mangel, Electric Generators Fitted to Wind Turbine Systems: An Up-to-Date Comparative Study,, J. Electr. Syst., vol. 11, no. 3, p.281–295, Sep. (2015).
Google Scholar
[36]
A. Lebsir, Performances comparées de machines synchrones à aimants permanents et à réluctance variable associées à une chaine de conversion d'energie renouvelable,, (2016).
Google Scholar
[37]
B. Multon and C. Jacques, Comparaison de deux moteurs électriques autopilotés : le moteur synchrone à aimants permanents et le moteur à reluctance variable à double saillance,, Congrès Réal. Perspect. Véhicule Électr., p.295–302, (1993).
Google Scholar
[38]
G. Luthra, Comparison of Characteristics of Various Motor Drives Currently Used in Electric Vehicle Propulsion System,, in SARC-ACN International Conference, New-Delhi, India, Mar. 2017, p.4.
Google Scholar
[39]
A. Omekanda, B. Lequesne, H. Klode, S. Gopalakrishnan, and I. Husain, Switched reluctance and permanent magnet brushless motors in highly dynamic situations: A comparison in the context of electric brakes,, Ind. Appl. Mag. IEEE, vol. 15, p.35–43, Sep. 2009,.
DOI: 10.1109/mias.2009.932595
Google Scholar
[40]
P. Bhatt, H. Mehar, and M. Sahajwani, Electrical Motors for Electric Vehicle – A Comparative Study,, Social Science Research Network, Rochester, NY, SSRN Scholarly Paper ID 3364887, Apr. 2019.
DOI: 10.2139/ssrn.3364887
Google Scholar
[41]
E. Afjei and H. Torkaman, Comparison of two types of hybrid motor/generator,, in SPEEDAM 2010, Jun. 2010, p.982–986.
DOI: 10.1109/speedam.2010.5544843
Google Scholar
[42]
Y. Amirat, M. Benbouzid, B. Bensaker, and R. Wamkeue, Generators for Wind Energy Conversion Systems: State of the Art and Coming Attractions,, J. Electr. Syst., vol. 3, (2007).
DOI: 10.1109/iemdc.2007.383639
Google Scholar
[43]
M. Cheng and Y. Zhu, The state of the art of wind energy conversion systems and technologies: A review,, Energy Convers. Manag., vol. 88, p.332–347, 2014, doi: https://doi.org/10.1016/j.enconman.2014.08.037.
DOI: 10.1016/j.enconman.2014.08.037
Google Scholar
[44]
T. Finken, M. Felden, and K. Hameyer, Comparison and design of different electrical machine types regarding their applicability in hybrid electrical vehicles,, Oct. 2008, p.1–5.
DOI: 10.1109/icelmach.2008.4800044
Google Scholar
[45]
M. Yıldırım, M. Polat, and H. Kurum, A survey on comparison of electric motor types and drives used for electric vehicles,, Sep. 2014, p.218–223.
DOI: 10.1109/epepemc.2014.6980715
Google Scholar
[46]
J. Nurdin, F. Napitupulu, Ilmi, and H. Ambarita, Manufacturing and testing prototype of a gamma type Stirling engine for micro-CHP application,, IOP Conf. Ser. Mater. Sci. Eng., vol. 725, p.012016, 2020,.
DOI: 10.1088/1757-899x/725/1/012016
Google Scholar
[47]
J. G. de la Bat, R. Dobson, T. Harms, and A. Bell, Simulation, manufacture and experimental validation of a novel single-acting free-piston Stirling engine electric generator,, Appl. Energy, vol. 263, 2020,.
DOI: 10.1016/j.apenergy.2020.114585
Google Scholar
[48]
H. Shabgard, A. Faghri, T. L. Bergman, and C. E. Andraka, Numerical Simulation of Heat Pipe-Assisted Latent Heat Thermal Energy Storage Unit for Dish-Stirling Systems,, J. Sol. Energy Eng., vol. 136, no. 2, p.021025, May 2014,.
DOI: 10.1115/imece2013-65487
Google Scholar
[49]
Y. Kadri and H. Hadj Abdallah, Performance evaluation of a stand-alone solar dish Stirling system for power generation suitable for off-grid rural electrification,, Energy Convers. Manag., vol. 129, p.140–156, Dec. 2016,.
DOI: 10.1016/j.enconman.2016.10.024
Google Scholar
[50]
A. Mohammadnia, B. Ziapour, F. Sedaghati, L. Rosendahl, and A. Rezania, Utilizing Thermoelectric Generator as Cavity Temperature Controller for Temperature Management in Dish-Stirling Engine,, Appl. Therm. Eng., vol. 165, p.114568, 2019,.
DOI: 10.1016/j.applthermaleng.2019.114568
Google Scholar
[51]
R. Li, Applications of Stirling engine in sustainable development : context-experimental and numerical study,, thesis, Paris 10, 2017. Accessed: Oct. 22, 2018. [Online]. Available: http://www.theses.fr/2017PA100066.
Google Scholar
[52]
S. A. Shufat, E. Kurt, C. Cinar, F. Aksoy, A. Hançerlioğulları, and H. Solmaz, Exploration of a Stirling engine and generator combination for air and helium media,, Appl. Therm. Eng., vol. 150, no. October 2018, p.738–749, 2019,.
DOI: 10.1016/j.applthermaleng.2019.01.053
Google Scholar
[53]
M. H. Mike, Stirling Engine for Solar Thermal Electric Generation,, PhD Thesis, University of California, Berkeley, 2018. [Online]. Available: http://www2.eecs.berkeley.edu/Pubs/TechRpts/2018/EECS-2018-15.html.
Google Scholar
[54]
T. T. Dang, Optimisation de l'ensemble convertisseur-générateur-commande intégré à un système de micro-cogénération thermo-mécano-électrique,, phdthesis, École normale supérieure de Cachan - ENS Cachan, 2013. Accessed: Sep. 04, 2018. [Online]. Available: https://tel.archives-ouvertes.fr/tel-01063146/document.
Google Scholar
[55]
L. Dall'Ora, Analysis and Design of a Linear Tubular Electric Machine for Free-piston Stirling Micro-cogeneration Systems,, Ph.D. thesis, Universita Degli Studi Di PADOVA, 2014. Accessed: Sep. 25, 2018. [Online]. Available: http://paduaresearch.cab.unipd.it/6366/.
Google Scholar
[56]
S. Bhattacharjee, Analysis of a Three Phase Induction Motor Directly from Maxwell's Equations,, Am. J. Phys., vol. 80, Sep. 2011,.
Google Scholar
[57]
F. Leon and S. Purushothaman, Closed-form computation of electromagnetic fields in induction motors,, Int. J. Power Energy Syst., vol. 33, Jan. 2013,.
DOI: 10.2316/journal.203.2013.2.203-5079
Google Scholar
[58]
Z. Q. Zhu, K. Ng, N. Schofield, and D. Howe, Improved analytical modelling of rotor eddy current loss in brushless machines equipped with surface-mounted permanent magnets,, IEE Proc. - Electr. Power Appl., vol. 151, no. 6, p.641–650, Nov. 2004,.
DOI: 10.1049/ip-epa:20040546
Google Scholar
[59]
A. Marrocco, Analyse numerique des problèmes d'électrotechnique,, Ann Sc Math Qué., vol. vol1, no. 2, p.271–296, (1977).
Google Scholar
[60]
C. Huynh, L. Zheng, and D. Acharya, Losses in High Speed Permanent Magnet Machines Used in Microturbine Applications,, J. Eng. Gas Turbines Power, vol. 131, no. 2, Mar. 2009,.
DOI: 10.1115/1.2982151
Google Scholar
[61]
P. Juha, J. Tapani, and H. Valéria, Design of Rotating Electrical Machines. Chichester, West Sussex, United Kingdom ; Hoboken, NJ: Wiley-Blackwell, (2008).
Google Scholar