[1]
V.Giurgiutiu, Structural health monitoring: with piezoelectric wafer active sensors, Academic Press, Elsevier, 1st edition, (2007), ISBN: 9780080556796.
Google Scholar
[2]
A.Kamal, V.Giurgiutiu, Shear horizontal wave excitation and reception with shear horizontal piezoelectric wafer active sensor (SH-PWAS), Smart Materials and Structures, 23(8) (2014) 085019.
DOI: 10.1088/0964-1726/23/8/085019
Google Scholar
[3]
K.Waszczuk, T. Piasecki, K. Nitsch, T.Gotszalk, Application of piezoelectric tuning forks in liquid viscosity and density measurements, Sensors and Actuators B: Chemical, 160(1) (2011) 517-523.
DOI: 10.1016/j.snb.2011.08.020
Google Scholar
[4]
S.Na HK. Lee, Steel wire electromechanical impedance method using a piezoelectric material for composite structures with complex surfaces, Composite Structures, 98 (2013) 79-84.
DOI: 10.1016/j.compstruct.2012.10.046
Google Scholar
[5]
G.Wang, C.Tan, F.Li, A contact resonance viscometer based on the electromechanical impedance of a piezoelectric cantilever, Sensors and Actuators A: Physical, 267 (2017) 401-408.
DOI: 10.1016/j.sna.2017.10.041
Google Scholar
[6]
A.Abdulkareem, U. Erturun, K. Mossi, Non-Destructive Evaluation Device for Monitoring Fluid Viscosity, Sensors, 20(6) (2020) 1657.
DOI: 10.3390/s20061657
Google Scholar
[7]
S.Gürgen, MC.Kuşhan, W.Li, Shear thickening fluids in protective applications: A review. Prog Polym Sci.,75 (2017) 48–72.
DOI: 10.1016/j.progpolymsci.2017.07.003
Google Scholar
[8]
NYC. Lin, et al., Hydrodynamic and contact contributions to continuous shear thickening in colloidal suspensions. Phys Rev Lett., 115 (22) (2015).
DOI: 10.1103/physrevlett.115.228304
Google Scholar
[9]
R.Mari, R.Seto, JF Morris, MM. Denn, Shear thickening, frictionless and frictional rheologies in non-Brownian suspensions. J Rheol.,58(6) (2014) 1693–724.
DOI: 10.1122/1.4890747
Google Scholar
[10]
IR. Peters IR, S.Majumdar, HM.Jaeger, Direct observation of dynamic shear jamming in dense suspensions. Nature, 532(7598) (2016) 214–7.
DOI: 10.1038/nature17167
Google Scholar
[11]
JR Melrose, RC. Ball, Contact networks in continuously shear thickening colloids. J Rheol.,48(5) (2004) 961–78.
DOI: 10.1122/1.1784784
Google Scholar
[12]
S.Gürgen, MC. Kuşhan, The ballistic performance of aramid based fabrics impregnated with multi-phase shear thickening fluids. Polym Test, 64 (2017) 296–306.
DOI: 10.1016/j.polymertesting.2017.11.003
Google Scholar
[13]
S.Gürgen, MC. Kuşhan, The stab resistance of fabrics impregnated with shear thickening fluids including various particle size of additives. Composites Part Appl Sci Manuf., 94 (2017) 50–60.
DOI: 10.1016/j.compositesa.2016.12.019
Google Scholar
[14]
S. Gürgen, MC. Kuşhan, The effect of silicon carbide additives on the stab resistance of shear thickening fluid treated fabrics. Mech Adv Mater Struct., 24(16) (2017) 1381–90.
DOI: 10.1080/15376494.2016.1231355
Google Scholar
[15]
S. Gürgen, An investigation on composite laminates including shear thickening fluid under stab condition. Journal of Composite Materials, 53(8) (2019) 1111-1122.
DOI: 10.1177/0021998318796158
Google Scholar
[16]
K. Lin, H.Liu, M. Wei, A.Zhou, F.Bu, Dynamic performance of shear-thickening fluid damper under long-term cyclic loads. Smart Mater Struct., 28(2) (2019) 025007.
DOI: 10.1088/1361-665x/aaf079
Google Scholar
[17]
H.Zhou, L. Yan, W.Jiang, S.Xuan, X.Gong, Shear thickening fluid–based energy-free damper: design and dynamic characteristics. J Intell Mater Syst Struct., 27(2) (2016) 208–20.
DOI: 10.1177/1045389x14563869
Google Scholar
[18]
S.Gürgen, MA.Sofuoğlu, Experimental investigation on vibration characteristics of shear thickening fluid filled CFRP tubes. Compos Struct., 226 (2019) 111236.
DOI: 10.1016/j.compstruct.2019.111236
Google Scholar
[19]
S.Gürgen, MA.Sofuoğlu, Vibration attenuation of sandwich structures filled with shear thickening fluids. Compos B Eng.,186 (2020) 107831.
DOI: 10.1016/j.compositesb.2020.107831
Google Scholar
[20]
M.Li, B.Lyu, J.Yuan, C.Dong, W.Dai, Shear-thickening polishing method. Int J Mach Tool Manufact., 94 (2015) 88–99.
Google Scholar
[21]
J.Span, P.Koshy, F.Klocke, S.Müller, R.Coelho, Dynamic jamming in dense suspensions: surface finishing and edge honing applications. CIRP Ann, 66(1) (2017) 321–324.
DOI: 10.1016/j.cirp.2017.04.082
Google Scholar
[22]
S.Gürgen, A.Sert, Polishing operation of a steel bar in a shear thickening fluid medium. Compos B Eng., 175 (2019) 107127.
DOI: 10.1016/j.compositesb.2019.107127
Google Scholar
[23]
S.Bhalla, A.Gupta, S. Bansal, T.Garg, Ultra low cost adaptations of electromechanical impedance (EMI) technique for structural health monitoring, Journal of Intelligent Material Systems and Structures, 20(8) (2009) 991-999.
DOI: 10.1177/1045389x08100384
Google Scholar
[24]
KK.Kanazawa, JG. Gordon,The oscillation frequency of a quartz resonator in contact with a liquid. Analytica Chemica Acta, 175 (1985) 99–105.
DOI: 10.1016/s0003-2670(00)82721-x
Google Scholar
[25]
F.Josse, Z. Shana, Analysis of shear horizontal surface waves at the boundary between a pieazoelectric crystal and a viscous fluid medium. Journal of Acoustical Society of America, (1988) 978–984.
DOI: 10.1121/1.396613
Google Scholar
[26]
G.Bossis, and JF Brady, The rheology of Brownian suspensions, J. Chem. Phys., 91(3) (1989) 1866–1874.
Google Scholar
[27]
S.Gürgen, Tuning the Rheology of Nano-Sized Silica Suspensions with Silicon Nitride Particles, J. Nano Res., 56 (2019) 63–70.
DOI: 10.4028/www.scientific.net/jnanor.56.63
Google Scholar
[28]
S.Gürgen, MC.Kuşhan, and W.Li, The effect of carbide particle additives on rheology of shear thickening fluids, Korea-Aust. Rheol. J., 28(2) (2016) 121–128.
DOI: 10.1007/s13367-016-0011-x
Google Scholar
[29]
S.Gürgen, MA.Sofuoğlu, and MC.Kuşhan, Rheological compatibility of multi-phase shear thickening fluid with a phenomenological model, Smart Mater. Struct., 28(3) (2019) 035027.
DOI: 10.1088/1361-665x/ab018c
Google Scholar