[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Bioinspired nanotopographical design of drug delivery systems

Abstract

Effective drug delivery is important in the treatment of various biomedical conditions, ranging from autoimmune disorders to cancer and bacterial infections. Nanostructured systems can help to overcome challenges to efficient drug delivery such as poor drug distribution, inefficient penetration across biological barriers and off-target effects. The bioinspired nanotopography of drug carrier surfaces provides a physical cue to modulate their interaction with biological systems. In this Review, we discuss how naturally occurring nanotopographical systems can inspire the design of biomaterials for drug delivery. We highlight nanoscale surface modifications of drug carriers and fabrication strategies, followed by a discussion about nanotopographical biointerfaces to regulate biological functions. Key bioinspired nanotopographical functionalities include bio-adhesion, barrier remodelling, drug uptake and subcellular trafficking, cellular signalling and modulation, and antimicrobial interfaces. Finally, we provide an outlook on the future of nanotopographical applications in drug delivery, with a focus on key challenges and exciting opportunities from bench to bedside.

Key points

  • Three-dimensional nanotopography is ubiquitous in nature (for example, spiky pollen microparticles and nanopillars on cicada wings), impacting the biointerface of surfaces and biological components.

  • Bioinspired nanotopography can be engineered for every major drug carrier class, including thin films, patches, implants, stents and discrete particle drug carriers.

  • Bioinspired nanotopography can improve bio-adhesion, drug uptake and trafficking, epithelial barrier remodelling, cell signalling, and modulation and can be applied to implement antimicrobial effects.

  • Nanotopographical drug carriers can be applied to treat a variety of diseases and conditions, including diabetes, cancer, cardiovascular disease, fractures, wounds and microbial infections, improving biomedical outcomes in preclinical studies compared to drug delivery approaches without nanotopography.

  • Advances in nanotopographical fabrication, cell–material interface characterization, and in vitro and in vivo disease models will be key to promoting the clinical translation of nanotopographical platforms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Bioinspired nanotopographical materials for drug delivery applications.
Fig. 2: Nanotopographical biointerfaces to increase drug retention and uptake.
Fig. 3: Nanotopography for cellular reprogramming and modulation.
Fig. 4: Antimicrobial nanotopographical interfaces.

Similar content being viewed by others

References

  1. Goldberg, M., Langer, R. & Jia, X. Nanostructured materials for applications in drug delivery and tissue engineering. J. Biomater. Sci. Polym. Ed. 18, 241–268 (2007).

    Article  Google Scholar 

  2. Bulbake, U., Doppalapudi, S., Kommineni, N. & Khan, W. Liposomal formulations in clinical use: an updated review. Pharmaceutics 9, 12 (2017).

    Article  Google Scholar 

  3. Finbloom, J. A., Sousa, F., Stevens, M. M. & Desai, T. A. Engineering the drug carrier biointerface to overcome biological barriers to drug delivery. Adv. Drug Deliv. Rev. 167, 89–108 (2020). The article reviews the physicochemical design of drug carriers to overcome biological barriers, such as mucus, biofilms, the immune system and cellular uptake, and describes key carrier classes and design parameters.

    Article  Google Scholar 

  4. Brown, T. D., Whitehead, K. A. & Mitragotri, S. Materials for oral delivery of proteins and peptides. Nat. Rev. Mater. 5, 127–148 (2020).

    Article  Google Scholar 

  5. Ahadian, S. et al. Micro and nanoscale technologies in oral drug delivery. Adv. Drug Deliv. Rev. 157, 37–62 (2020).

    Article  Google Scholar 

  6. Esdaille, C. J., Washington, K. S. & Laurencin, C. T. Regenerative engineering: a review of recent advances and future directions. Regen. Med. 16, 495–512 (2021).

    Article  Google Scholar 

  7. Zhao, Z., Ukidve, A., Krishnan, V. & Mitragotri, S. Effect of physicochemical and surface properties on in vivo fate of drug nanocarriers. Adv. Drug Deliv. Rev. 143, 3–21 (2019).

    Article  Google Scholar 

  8. Venkataraman, S. et al. The effects of polymeric nanostructure shape on drug delivery. Adv. Drug Deliv. Rev. 63, 1228–1246 (2011).

    Article  Google Scholar 

  9. Fish, M. B., Thompson, A. J., Fromen, C. A. & Eniola-Adefeso, O. Emergence and utility of nonspherical particles in biomedicine. Ind. Eng. Chem. Res. 54, 4043–4059 (2015).

    Article  Google Scholar 

  10. Valcourt, D. M. et al. Advances in targeted nanotherapeutics: from bioconjugation to biomimicry. Nano Res. 11, 4999–5016 (2018).

    Article  Google Scholar 

  11. Dalby, M. J., Gadegaard, N. & Oreffo, R. O. C. Harnessing nanotopography and integrin–matrix interactions to influence stem cell fate. Nat. Mater. 13, 558–569 (2014).

    Article  Google Scholar 

  12. Bjorge, I. M., Correia, C. R. & Mano, J. F. Hipster microcarriers: exploring geometrical and topographical cues of non-spherical microcarriers in biomedical applications. Mater. Horiz. 9, 908–933 (2022).

    Article  Google Scholar 

  13. Kim, H. N. et al. Nanotopography-guided tissue engineering and regenerative medicine. Adv. Drug Deliv. Rev. 65, 536–558 (2013).

    Article  Google Scholar 

  14. Walsh, L. A., Allen, J. L. & Desai, T. A. Nanotopography applications in drug delivery. Expert Opin. Drug Deliv. 12, 1823–1827 (2015).

    Article  Google Scholar 

  15. Ogaki, R., Andersen, O. Z. & Foss, M. In Nanomedicine (eds Howard, K. A., Vorup-Jensen, T. & Peer, D.) 343–372 (Springer, 2016).

  16. Carthew, J. et al. The bumpy road to stem cell therapies: rational design of surface topographies to dictate stem cell mechanotransduction and fate. ACS Appl. Mater. Interfaces https://doi.org/10.1021/acsami.1c22109 (2022).

    Article  Google Scholar 

  17. Peng, L. et al. Long-term small molecule and protein elution from TiO2 nanotubes. Nano Lett. 9, 1932–1936 (2009).

    Article  Google Scholar 

  18. Hadjiargyrou, M. & Chiu, J. B. Enhanced composite electrospun nanofiber scaffolds for use in drug delivery. Expert Opin. Drug Deliv. 5, 1093–1106 (2008).

    Article  Google Scholar 

  19. Kumbar, S. G., Nair, L. S., Bhattacharyya, S. & Laurencin, C. T. Polymeric nanofibers as novel carriers for the delivery of therapeutic molecules. J. Nanosci. Nanotechnol. 6, 2591–2607 (2006).

    Article  Google Scholar 

  20. Barhoum, A. et al. Review on natural, incidental, bioinspired, and engineered nanomaterials: history, definitions, classifications, synthesis, properties, market, toxicities, risks, and regulations. Nanomaterials 12, 177 (2022).

    Article  Google Scholar 

  21. Ourani-Pourdashti, S. & Azadi, A. Pollens in therapeutic/diagnostic systems and immune system targeting. J. Control. Rel. 340, 308–317 (2021).

    Article  Google Scholar 

  22. Ishak, M. I., Liu, X., Jenkins, J., Nobbs, A. H. & Su, B. Protruding nanostructured surfaces for antimicrobial and osteogenic titanium implants. Coatings 10, 756 (2020).

    Article  Google Scholar 

  23. Mansy, S. S. & AbouSamra, M. M. Electron microscopy overview of SARS-COV2 and its clinical impact. Ultrastruct. Pathol. 46, 1–17 (2022).

    Article  Google Scholar 

  24. Rossmann, M. G., Mesyanzhinov, V. V., Arisaka, F. & Leiman, P. G. The bacteriophage T4 DNA injection machine. Curr. Opin. Struct. Biol. 14, 171–180 (2004).

    Article  Google Scholar 

  25. Gudis, D., Zhao, K.-Q. & Cohen, N. A. Acquired cilia dysfunction in chronic rhinosinusitis. Am. J. Rhinol. Allergy 26, 1–6 (2012).

    Article  Google Scholar 

  26. Xu, F. & de Craene, L. P. R. Pollen morphology and ultrastructure of selected species from Annonaceae. Plant Syst. Evol. 299, 11–24 (2013).

    Article  Google Scholar 

  27. Chen, P.-M. et al. Pollen-mimetic metal–organic frameworks with tunable spike-like nanostructures that promote cell interactions to improve antigen-specific humoral immunity. ACS Nano 15, 7596–7607 (2021).

    Article  Google Scholar 

  28. Wang, W. et al. Facile synthesis of uniform virus-like mesoporous silica nanoparticles for enhanced cellular internalization. ACS Cent. Sci. 3, 839–846 (2017). The article reports spiky nanoparticle fabrication and functionalization with chemotherapeutics for enhanced cellular uptake and drug delivery.

    Article  Google Scholar 

  29. Lee, S. S. et al. Bone regeneration with low dose BMP-2 amplified by biomimetic supramolecular nanofibers within collagen scaffolds. Biomaterials 34, 452–459 (2013).

    Article  Google Scholar 

  30. Kim, H. S., Mandakhbayar, N., Kim, H.-W., Leong, K. W. & Yoo, H. S. Protein-reactive nanofibrils decorated with cartilage-derived decellularized extracellular matrix for osteochondral defects. Biomaterials 269, 120214 (2021).

    Article  Google Scholar 

  31. Linklater, D. P. et al. Mechano-bactericidal actions of nanostructured surfaces. Nat. Rev. Microbiol. 19, 8–22 (2021).

    Article  Google Scholar 

  32. Mohindra, P. & Desai, T. A. Micro- and nanoscale biophysical cues for cardiovascular disease therapy. Nanomed. Nanotechnol. Biol. Med. 34, 102365 (2021).

    Article  Google Scholar 

  33. Harawaza, K., Cousins, B., Roach, P. & Fernandez, A. Modification of the surface nanotopography of implant devices: a translational perspective. Mater. Today Bio 12, 100152 (2021).

    Article  Google Scholar 

  34. Kwon, S. et al. Nanotopography-based lymphatic delivery for improved anti-tumor responses to checkpoint blockade immunotherapy. Theranostics 9, 8332–8343 (2019). The article reports an effective and translatable approach to delivering immunomodulatory signals to lymphatic tissues, which has broad potential in treating cancer and autoimmune diseases.

    Article  Google Scholar 

  35. Bagheri, E. et al. Silica based hybrid materials for drug delivery and bioimaging. J. Control. Rel. 277, 57–76 (2018).

    Article  Google Scholar 

  36. Goh, Y.-F., Shakir, I. & Hussain, R. Electrospun fibers for tissue engineering, drug delivery, and wound dressing. J. Mater. Sci. 48, 3027–3054 (2013).

    Article  Google Scholar 

  37. Norman, J. J. & Desai, T. A. Methods for fabrication of nanoscale topography for tissue engineering scaffolds. Ann. Biomed. Eng. 34, 89–101 (2006).

    Article  Google Scholar 

  38. Weigel, T., Schinkel, G. & Lendlein, A. Design and preparation of polymeric scaffolds for tissue engineering. Expert Rev. Med. Devices 3, 835–851 (2006).

    Article  Google Scholar 

  39. Alkekhia, D., Hammond, P. T. & Shukla, A. In Annual Review of Biomedical Engineering, Vol 22 (ed. Yamush, M. L.) vol. 22 1–24 (Annual Reviews, 2020).

  40. Sun, X., Li, M., Yang, Y., Jia, H. & Liu, W. Carrier-free nanodrug-based virus-surface-mimicking nanosystems for efficient drug/gene co-delivery. Biomater. Sci. 6, 3300–3308 (2018).

    Article  Google Scholar 

  41. Sant, S. et al. Microfabrication technologies for oral drug delivery. Adv. Drug Deliv. Rev. 64, 496–507 (2012).

    Article  Google Scholar 

  42. Wood, M. A. Colloidal lithography and current fabrication techniques producing in-plane nanotopography for biological applications. J. R. Soc. Interface 4, 1–17 (2007).

    Article  Google Scholar 

  43. Fenyves, R., Schmutz, M., Horner, I. J., Bright, F. V. & Rzayev, J. Aqueous self-assembly of giant bottlebrush block copolymer surfactants as shape-tunable building blocks. J. Am. Chem. Soc. 136, 7762–7770 (2014).

    Article  Google Scholar 

  44. Tan, A. W., Pingguan-Murphy, B., Ahmad, R. & Akbar, S. A. Advances in fabrication of TiO2 nanofiber/nanowire arrays toward the cellular response in biomedical implantations: a review. J. Mater. Sci. 48, 8337–8353 (2013).

    Article  Google Scholar 

  45. Fox, C. B. et al. Micro/nanofabricated platforms for oral drug delivery. J. Control. Rel. 219, 431–444 (2015).

    Article  Google Scholar 

  46. Damodaran, V. B., Bhatnagar, D., Leszczak, V. & Popat, K. C. Titania nanostructures: a biomedical perspective. RSC Adv. 5, 37149–37171 (2015).

    Article  Google Scholar 

  47. Daly, A. C., Riley, L., Segura, T. & Burdick, J. A. Hydrogel microparticles for biomedical applications. Nat. Rev. Mater. 5, 20–43 (2020).

    Article  Google Scholar 

  48. Moe, A. A. K. et al. Microarray with micro- and nano-topographies enables identification of the optimal topography for directing the differentiation of primary murine neural progenitor cells. Small 8, 3050–3061 (2012).

    Article  Google Scholar 

  49. Hulshof, F. F. B. et al. NanoTopoChip: high-throughput nanotopographical cell instruction. Acta Biomater. 62, 188–198 (2017). The article reports the high-throughput design of nanotopography arrays to elucidate structure–function relationships in cell behaviour and differentiation.

    Article  Google Scholar 

  50. Yang, L., Jurczak, K. M., Ge, L. & van Rijn, P. High-throughput screening and hierarchical topography-mediated neural differentiation of mesenchymal stem cells. Adv. Healthc. Mater. 9, 2000117 (2020).

    Article  Google Scholar 

  51. Yang, L. et al. Predictive biophysical cue mapping for direct cell reprogramming using combinatorial nanoarrays. ACS Nano https://doi.org/10.1021/acsnano.1c10344 (2022).

    Article  Google Scholar 

  52. Vermeulen, S. et al. Expanding biomaterial surface topographical design space through natural surface reproduction. Adv. Mater. 33, 2102084 (2021).

    Article  Google Scholar 

  53. Cao, Y., Samy, K. E., Bernards, D. A. & Desai, T. A. Recent advances in intraocular sustained-release drug delivery devices. Drug Discov. Today 24, 1694–1700 (2019).

    Article  Google Scholar 

  54. Ganda, S., Wong, C. K. & Stenzel, M. H. Corona-loading strategies for crystalline particles made by living crystallization-driven self-assembly. Macromolecules 54, 6662–6669 (2021).

    Article  Google Scholar 

  55. Jafari, S. et al. Biomedical applications of TiO2 nanostructures: recent advances. Int. J. Nanomed. 15, 3447–3470 (2020).

    Article  Google Scholar 

  56. Aw, M. S., Kurian, M. & Losic, D. Non-eroding drug-releasing implants with ordered nanoporous and nanotubular structures: concepts for controlling drug release. Biomater. Sci. 2, 10–34 (2014).

    Article  Google Scholar 

  57. Gultepe, E., Nagesha, D., Sridhar, S. & Amiji, M. Nanoporous inorganic membranes or coatings for sustained drug delivery in implantable devices. Adv. Drug. Deliv. Rev. 62, 305–315 (2010).

    Article  Google Scholar 

  58. Jung, D., Rejinold, N. S., Kwak, J.-E., Park, S.-H. & Kim, Y.-C. Nano-patterning of a stainless steel microneedle surface to improve the dip-coating efficiency of a DNA vaccine and its immune response. Colloids Surf. B Biointerfaces 159, 54–61 (2017).

    Article  Google Scholar 

  59. Yu, D.-G., Wang, M. & Ge, R. Strategies for sustained drug release from electrospun multi-layer nanostructures. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 14, e1772 (2022).

    Article  Google Scholar 

  60. Bernards, D. A., Lance, K. D., Ciaccio, N. A. & Desai, T. A. Nanostructured thin film polymer devices for constant-rate protein delivery. Nano Lett. 12, 5355–5361 (2012).

    Article  Google Scholar 

  61. Fox, C. B., Kim, J., Schlesinger, E. B., Chirra, H. D. & Desai, T. A. Fabrication of micropatterned polymeric nanowire arrays for high-resolution reagent localization and topographical cellular control. Nano Lett. 15, 1540–1546 (2015).

    Article  Google Scholar 

  62. Hou, J. et al. A nanofiber-based drug depot with high drug loading for sustained release. Int. J. Pharm. 583, 119397 (2020).

    Article  Google Scholar 

  63. Zarkesh, I. et al. Facile synthesis of biphasic calcium phosphate microspheres with engineered surface topography for controlled delivery of drugs and proteins. Colloids Surf. B Biointerfaces 157, 223–232 (2017).

    Article  Google Scholar 

  64. Niu, Y. et al. Understanding the contribution of surface roughness and hydrophobic modification of silica nanoparticles to enhanced therapeutic protein delivery. J. Mater. Chem. B 4, 212–219 (2016).

    Article  Google Scholar 

  65. Song, H. et al. Plasmid DNA delivery: nanotopography matters. J. Am. Chem. Soc. 139, 18247–18254 (2017).

    Article  Google Scholar 

  66. Roh, Y. H. et al. A multi-RNAi microsponge platform for simultaneous controlled delivery of multiple small interfering RNAs. Angew. Chem. Int. Ed. 55, 3347–3351 (2016).

    Article  Google Scholar 

  67. Qazi, T. H., Mooney, D. J., Pumberger, M., Geissler, S. & Duda, G. N. Biomaterials based strategies for skeletal muscle tissue engineering: existing technologies and future trends. Biomaterials 53, 502–521 (2015).

    Article  Google Scholar 

  68. Richardson, T. P., Peters, M. C., Ennett, A. B. & Mooney, D. J. Polymeric system for dual growth factor delivery. Nat. Biotechnol. 19, 1029–1034 (2001).

    Article  Google Scholar 

  69. Blakney, A. K., Krogstad, E. A., Jiang, Y. H. & Woodrow, K. A. Delivery of multipurpose prevention drug combinations from electrospun nanofibers using composite microarchitectures. Int. J. Nanomed. 9, 2967–2978 (2014).

    Article  Google Scholar 

  70. Wong, C. K., Chen, F., Walther, A. & Stenzel, M. H. Bioactive patchy nanoparticles with compartmentalized cargoes for simultaneous and trackable delivery. Angew. Chem. 131, 7413–7418 (2019).

    Article  Google Scholar 

  71. Kishan, A., Walker, T., Sears, N., Wilems, T. & Cosgriff-Hernandez, E. Winner of the society for biomaterials student award in the Ph.D. category for the annual meeting of the society for biomaterials, april 11–14, 2018, Atlanta, GA: development of a bimodal, in situ crosslinking method to achieve multifactor release from electrospun gelatin. J. Biomed. Mater. Res. A 106, 1155–1164 (2018).

    Article  Google Scholar 

  72. Okuda, T., Tominaga, K. & Kidoaki, S. Time-programmed dual release formulation by multilayered drug-loaded nanofiber meshes. J. Control. Rel. 143, 258–264 (2010).

    Article  Google Scholar 

  73. Autumn, K. et al. Adhesive force of a single gecko foot-hair. Nature 405, 681–685 (2000).

    Article  Google Scholar 

  74. Mahdavi, A. et al. A biodegradable and biocompatible gecko-inspired tissue adhesive. Proc. Natl. Acad. Sci. USA 105, 2307–2312 (2008).

    Article  Google Scholar 

  75. Kishan, A. et al. In vivo performance of a bilayer wrap to prevent abdominal adhesions. Acta Biomater. 115, 116–126 (2020).

    Article  Google Scholar 

  76. Freedman, B. R. et al. Enhanced tendon healing by a tough hydrogel with an adhesive side and high drug-loading capacity. Nat. Biomed. Eng. https://doi.org/10.1038/s41551-021-00810-0 (2022).

    Article  Google Scholar 

  77. Duncan, G. A., Jung, J., Hanes, J. & Suk, J. S. The mucus barrier to inhaled gene therapy. Mol. Ther. 24, 2043–2053 (2016).

    Article  Google Scholar 

  78. Krogstad, E. A. et al. Nanoparticle-releasing nanofiber composites for enhanced in vivo vaginal retention. Biomaterials 144, 1–16 (2017).

    Article  Google Scholar 

  79. Lin, H., Qu, Z. & Meredith, J. C. Pressure sensitive microparticle adhesion through biomimicry of the pollen–stigma interaction. Soft Matter 12, 2965–2975 (2016).

    Article  Google Scholar 

  80. Fish, M. B. et al. Deformable microparticles for shuttling nanoparticles to the vascular wall. Sci. Adv. 7, eabe0143 (2021).

    Article  Google Scholar 

  81. Anselmo, A. C. et al. Platelet-like nanoparticles: mimicking shape, flexibility, and surface biology of platelets to target vascular injuries. ACS Nano 8, 11243–11253 (2014).

    Article  Google Scholar 

  82. Feng, J. et al. Topographical binding to mucosa-exposed cancer cells: pollen-mimetic porous microspheres with tunable pore sizes. ACS Appl. Mater. Interfaces 7, 8961–8967 (2015).

    Article  Google Scholar 

  83. Park, C. G. et al. Enhanced ocular efficacy of topically-delivered dorzolamide with nanostructured mucoadhesive microparticles. Int. J. Pharm. 522, 66–73 (2017).

    Article  Google Scholar 

  84. Lee, M. et al. Sinonasal delivery of resveratrol via mucoadhesive nanostructured microparticles in a nasal polyp mouse model. Sci. Rep. 7, 40249 (2017).

    Article  Google Scholar 

  85. Park, C. G. et al. Nanostructured mucoadhesive microparticles for enhanced preocular retention. Acta Biomater. 10, 77–86 (2014).

    Article  Google Scholar 

  86. Park, C. G. et al. Mucoadhesive microparticles with a nanostructured surface for enhanced bioavailability of glaucoma drug. J. Control. Rel. 220, 180–188 (2015).

    Article  Google Scholar 

  87. Roh, S., Williams, A. H., Bang, R. S., Stoyanov, S. D. & Velev, O. D. Soft dendritic microparticles with unusual adhesion and structuring properties. Nat. Mater. 18, 1315–1320 (2019).

    Article  Google Scholar 

  88. Robotti, F. et al. A micron-scale surface topography design reducing cell adhesion to implanted materials. Sci. Rep. 8, 10887 (2018).

    Article  Google Scholar 

  89. Epstein, A. K., Wong, T.-S., Belisle, R. A., Boggs, E. M. & Aizenberg, J. Liquid-infused structured surfaces with exceptional anti-biofouling performance. Proc. Natl. Acad. Sci. USA 109, 13182–13187 (2012).

    Article  Google Scholar 

  90. González-Mariscal, L., Nava, P. & Hernández, S. Critical role of tight junctions in drug delivery across epithelial and endothelial cell layers. J. Membr. Biol. 207, 55–68 (2005).

    Article  Google Scholar 

  91. Shen, L., Weber, C. R., Raleigh, D. R., Yu, D. & Turner, J. R. Tight junction pore and leak pathways: a dynamic duo. Annu. Rev. Physiol. 73, 283–309 (2011).

    Article  Google Scholar 

  92. Lynn, K. S., Peterson, R. J. & Koval, M. Ruffles and spikes: control of tight junction morphology and permeability by claudins. Biochim. Biophys. Acta Biomembr. 1862, 183339 (2020).

    Article  Google Scholar 

  93. Yeste, J. et al. Epithelial monolayer development and tight junction assembly on nanopillar arrays. FASEB J. https://doi.org/10.1096/fasebj.2022.36.S1.R5705 (2022).

    Article  Google Scholar 

  94. Beutel, O., Maraspini, R., Pombo-García, K., Martin-Lemaitre, C. & Honigmann, A. Phase separation of zonula occludens proteins drives formation of tight junctions. Cell 179, 923–936.e11 (2019).

    Article  Google Scholar 

  95. Schwayer, C. et al. Mechanosensation of tight junctions depends on ZO-1 phase separation and flow. Cell 179, 937–952.e18 (2019).

    Article  Google Scholar 

  96. Walsh, L. et al. Nanotopography facilitates in vivo transdermal delivery of high molecular weight therapeutics through an integrin-dependent mechanism. Nano Lett. 15, 2434–2441 (2015).

    Article  Google Scholar 

  97. Huang, X. et al. Nanotopography enhances dynamic remodeling of tight junction proteins through cytosolic liquid complexes. ACS Nano 14, 13192–13202 (2020). The article reports the molecular mechanism of nanotopography-mediated tight junction remodelling, which sheds light on material engineering designs for drug delivery across tissue barriers.

    Article  Google Scholar 

  98. Permana, A. D., Nainu, F., Moffatt, K., Larrañeta, E. & Donnelly, R. F. Recent advances in combination of microneedles and nanomedicines for lymphatic targeted drug delivery. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 13, e1690 (2021).

    Article  Google Scholar 

  99. Iversen, T.-G., Skotland, T. & Sandvig, K. Endocytosis and intracellular transport of nanoparticles: Present knowledge and need for future studies. Nano Today 6, 176–185 (2011).

    Article  Google Scholar 

  100. Maghsoodi, A., Chatterjee, A., Andricioaei, I. & Perkins, N. C. How the phage T4 injection machinery works including energetics, forces, and dynamic pathway. Proc. Natl. Acad. Sci. USA 116, 25097–25105 (2019).

    Article  Google Scholar 

  101. VanDersarl, J. J., Xu, A. M. & Melosh, N. A. Nanostraws for direct fluidic intracellular access. Nano Lett. 12, 3881–3886 (2012).

    Article  Google Scholar 

  102. Xu, A. M. et al. Quantification of nanowire penetration into living cells. Nat. Commun. 5, 3613 (2014).

    Article  Google Scholar 

  103. Cao, Y. et al. Universal intracellular biomolecule delivery with precise dosage control. Sci. Adv. 4, eaat8131 (2018). This article reports a nanostraw array that, combined with low-voltage electroporation, enables controlled cytosolic delivery of gene editing cargos such as siRNA and Cas9 ribonucleoproteins.

    Article  Google Scholar 

  104. Higgins, S. G. et al. High‐aspect‐ratio nanostructured surfaces as biological metamaterials. Adv. Mater. 32, 1903862 (2020).

    Article  Google Scholar 

  105. Gopal, S. et al. Porous silicon nanoneedles modulate endocytosis to deliver biological payloads. Adv. Mater. 31, e1806788 (2019).

    Article  Google Scholar 

  106. Sheffey, V. V., Siew, E. B., Tanner, E. E. L. & Eniola-Adefeso, O. PLGA’s plight and the role of stealth surface modification strategies in its use for intravenous particulate drug delivery. Adv. Healthc. Mater. 11, 2101536 (2022).

    Article  Google Scholar 

  107. Piloni, A. et al. Surface roughness influences the protein corona formation of glycosylated nanoparticles and alter their cellular uptake. Nanoscale 11, 23259–23267 (2019).

    Article  Google Scholar 

  108. Lin, X. et al. Asymmetric silica nanoparticles with tailored spiky coverage derived from silica–polymer cooperative assembly for enhanced hemocompatibility and gene delivery. ACS Appl. Mater. Interfaces 13, 50695–50704 (2021).

    Article  Google Scholar 

  109. Chen, H.-J. et al. Functionalized spiky particles for intracellular biomolecular delivery. ACS Cent. Sci. 5, 960–969 (2019).

    Article  Google Scholar 

  110. Grundler, J., Shin, K., Suh, H.-W., Zhong, M. & Saltzman, W. M. Surface topography of polyethylene glycol shell nanoparticles formed from bottlebrush block copolymers controls interactions with proteins and cells. ACS Nano 15, 16118–16129 (2021).

    Article  Google Scholar 

  111. Finbloom, J. A., Cao, Y. & Desai, T. A. Bioinspired polymeric high-aspect-ratio particles with asymmetric Janus functionalities. Adv. NanoBiomed Res. 1, 2000057 (2021).

    Article  Google Scholar 

  112. Joo, H., Shin, J., Cho, S.-W. & Kim, P. Wrinkled-surface mediated reverse transfection platform for highly efficient, addressable gene delivery. Adv. Healthc. Mater. 5, 2025–2030 (2016).

    Article  Google Scholar 

  113. Roh, Y. H. et al. Layer-by-layer assembled antisense DNA microsponge particles for efficient delivery of cancer therapeutics. ACS Nano 8, 9767–9780 (2014).

    Article  Google Scholar 

  114. Belessiotis-Richards, A., Higgins, S. G., Butterworth, B., Stevens, M. M. & Alexander-Katz, A. Single-nanometer changes in nanopore geometry influence curvature, local properties, and protein localization in membrane simulations. Nano Lett. 19, 4770–4778 (2019).

    Article  Google Scholar 

  115. Delcanale, P., Miret-Ontiveros, B., Arista-Romero, M., Pujals, S. & Albertazzi, L. Nanoscale mapping functional sites on nanoparticles by points accumulation for imaging in nanoscale topography (PAINT). ACS Nano 12, 7629–7637 (2018).

    Article  Google Scholar 

  116. Nieves, D. J., Gaus, K. & Baker, M. A. B. DNA-based super-resolution microscopy: DNA-PAINT. Genes 9, 621 (2018).

    Article  Google Scholar 

  117. Whitaker, R., Hernaez-Estrada, B., Hernandez, R. M., Santos-Vizcaino, E. & Spiller, K. L. Immunomodulatory biomaterials for tissue repair. Chem. Rev. 121, 11305–11335 (2021).

    Article  Google Scholar 

  118. Shi, Y. & Lammers, T. Combining nanomedicine and immunotherapy. Acc. Chem. Res. 52, 1543–1554 (2019).

    Article  Google Scholar 

  119. Nicolas, J. et al. 3D Extracellular matrix mimics: fundamental concepts and role of materials chemistry to influence stem cell fate. Biomacromolecules 21, 1968–1994 (2020).

    Article  Google Scholar 

  120. Vining, K. H. & Mooney, D. J. Mechanical forces direct stem cell behaviour in development and regeneration. Nat. Rev. Mol. Cell Biol. 18, 728–742 (2017).

    Article  Google Scholar 

  121. Madl, C. M., Heilshorn, S. C. & Blau, H. M. Bioengineering strategies to accelerate stem cell therapeutics. Nature 557, 335–342 (2018).

    Article  Google Scholar 

  122. Finbloom, J. A., Demaree, B., Abate, A. R. & Desai, T. A. Networks of high aspect ratio particles to direct colloidal assembly dynamics and cellular interactions. Adv. Funct. Mater. 30, 2005938 (2020).

    Article  Google Scholar 

  123. Gungor-Ozkerim, P. S., Balkan, T., Kose, G. T., Sarac, A. S. & Kok, F. N. Incorporation of growth factor loaded microspheres into polymeric electrospun nanofibers for tissue engineering applications. J. Biomed. Mater. Res. A 102, 1897–1908 (2014).

    Article  Google Scholar 

  124. Lee, M. S., La, W.-G., Park, E. & Yang, H. S. Synergetic effect of 3,4-dihydroxy-l-phenylalanine-modified poly(lactic-co-glycolic acid) nanopatterned patch with fibroblast growth factor-2 for skin wound regeneration. J. Biomed. Mater. Res. B Appl. Biomater. 105, 594–604 (2017). This article reports FGF2 and PLGA nanogrooves to promote tissue regeneration in vitro and in vivo through a combination of enhanced fibroblast coverage, alignment and proliferation.

    Article  Google Scholar 

  125. Yang, K. et al. Biodegradable nanotopography combined with neurotrophic signals enhances contact guidance and neuronal differentiation of human neural stem cells. Macromol. Biosci. 15, 1348–1356 (2015).

    Article  Google Scholar 

  126. Maggi, A., Li, H. & Greer, J. R. Three-dimensional nano-architected scaffolds with tunable stiffness for efficient bone tissue growth. Acta Biomater. 63, 294–305 (2017).

    Article  Google Scholar 

  127. Kumar, P., Sobhanan, J., Takano, Y. & Biju, V. Molecular recognition in the infection, replication, and transmission of COVID-19-causing SARS-CoV-2: an emerging interface of infectious disease, biological chemistry, and nanoscience. NPG Asia Mater. 13, 1–14 (2021).

    Article  Google Scholar 

  128. Abbaraju, P. L. et al. Asymmetric silica nanoparticles with tunable head–tail structures enhance hemocompatibility and maturation of immune cells. J. Am. Chem. Soc. 139, 6321–6328 (2017).

    Article  Google Scholar 

  129. Wang, J. et al. Physical activation of innate immunity by spiky particles. Nat. Nanotechnol. 13, 1078–1086 (2018). This article reports the molecular mechanism of spiky nanotopography-enhanced innate immune cell activation, which can facilitate more potent vaccine designs.

    Article  Google Scholar 

  130. Chen, P.-M. et al. Bioinspired engineering of a bacterium-like metal–organic framework for cancer immunotherapy. Adv. Funct. Mater. 30, 2003764 (2020).

    Article  Google Scholar 

  131. Song, H. et al. DNA vaccine mediated by rambutan-like mesoporous silica nanoparticles. Adv. Ther. 3, 1900154 (2020).

    Article  Google Scholar 

  132. Kwon, K. W. et al. Nanotopography-guided migration of T cells. J. Immunol. 189, 2266–2273 (2012).

    Article  Google Scholar 

  133. Lord, M. S., Foss, M. & Besenbacher, F. Influence of nanoscale surface topography on protein adsorption and cellular response. Nano Today 5, 66–78 (2010).

    Article  Google Scholar 

  134. Kam, K. R. et al. The effect of nanotopography on modulating protein adsorption and the fibrotic response. Tissue Eng. Part A 20, 130–138 (2014).

    Article  Google Scholar 

  135. Ainslie, K. M. et al. In vitro inflammatory response of nanostructured titania, silicon oxide, and polycaprolactone. J. Biomed. Mater. Res. A 91A, 647–655 (2009).

    Article  Google Scholar 

  136. Dabare, P. R. L., Bachhuka, A., Parkinson-Lawrence, E. & Vasilev, K. Surface nanotopography mediated albumin adsorption, unfolding and modulation of early innate immune responses. Mater. Today Adv. 12, 100187 (2021).

    Article  Google Scholar 

  137. Westas Janco, E., Hulander, M. & Andersson, M. Curvature-dependent effects of nanotopography on classical immune complement activation. Acta Biomater. 74, 112–120 (2018).

    Article  Google Scholar 

  138. Deusenbery, C., Wang, Y. & Shukla, A. Recent Innovations in bacterial infection detection and treatment. ACS Infect. Dis. 7, 695–720 (2021).

    Article  Google Scholar 

  139. Makabenta, J. M. V. et al. Nanomaterial-based therapeutics for antibiotic-resistant bacterial infections. Nat. Rev. Microbiol. 19, 23–36 (2021).

    Article  Google Scholar 

  140. Walvekar, P., Gannimani, R. & Govender, T. Combination drug therapy via nanocarriers against infectious diseases. Eur. J. Pharm. Sci. 127, 121–141 (2019).

    Article  Google Scholar 

  141. Wang, Y. & Shukla, A. Bacteria-responsive biopolymer-coated nanoparticles for biofilm penetration and eradication. Biomater. Sci. 10, 2831–2843 (2022).

    Article  Google Scholar 

  142. Finbloom, J. A., Raghavan, P., Kharbikar, B. N., Yu, M. A. & Desai, T. A. Polyelectrolyte nanocomplex formation combined with electrostatic self-assembly enables the co-delivery of synergistic antimicrobials to treat bacterial biofilms. Preprint at bioRxiv https://doi.org/10.1101/2021.11.22.469570 (2021).

    Article  Google Scholar 

  143. Amin Yavari, S. et al. Antibacterial behavior of additively manufactured porous titanium with nanotubular surfaces releasing silver ions. ACS Appl. Mater. Interfaces 8, 17080–17089 (2016).

    Article  Google Scholar 

  144. Genchi, G. G., Cao, Y. & Desai, T. A. TiO2 nanotube arrays as smart platforms for biomedical applications. in Smart Nanoparticles for Biomedicine (ed. Ciofani, G.) 143–157 (Elsevier, 2018).

  145. Li, J. et al. Combined Infection Control and Enhanced Osteogenic Differentiation Capacity on Additive Manufactured Ti-6Al-4V are Mediated via Titania Nanotube Delivery of Novel Biofilm Inhibitors. Adv. Mater. Interfaces 7, 1901963 (2020).

    Article  Google Scholar 

  146. Elbourne, A., Crawford, R. J. & Ivanova, E. P. Nano-structured antimicrobial surfaces: from nature to synthetic analogues. J. Colloid Interface Sci. 508, 603–616 (2017).

    Article  Google Scholar 

  147. Cheng, Y., Feng, G. & Moraru, C. I. Micro- and nanotopography sensitive bacterial attachment mechanisms: a review. Front. Microbiol. 10, 191 (2019).

    Article  Google Scholar 

  148. Ensikat, H. J., Ditsche-Kuru, P., Neinhuis, C. & Barthlott, W. Superhydrophobicity in perfection: the outstanding properties of the lotus leaf. Beilstein J. Nanotechnol. 2, 152–161 (2011).

    Article  Google Scholar 

  149. Wong, T.-S. et al. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature 477, 443–447 (2011).

    Article  Google Scholar 

  150. Ganjian, M. et al. Nature Helps: toward Bioinspired Bactericidal Nanopatterns. Adv. Mater. Interfaces 6, 1900640 (2019).

    Article  Google Scholar 

  151. Bandara, C. D. et al. Bactericidal effects of natural nanotopography of dragonfly wing on Escherichia coli. ACS Appl. Mater. Interfaces 9, 6746–6760 (2017).

    Article  Google Scholar 

  152. Pogodin, S. et al. Biophysical model of bacterial cell interactions with nanopatterned cicada wing surfaces. Biophys. J. 104, 835–840 (2013).

    Article  Google Scholar 

  153. Ivanova, E. P. et al. Bactericidal activity of black silicon. Nat. Commun. 4, 2838 (2013). This article reports contact-mediated bacterial killing with black silicon nanospikes, demonstrating antimicrobial activities against both gram-negative and gram-positive pathogens.

    Article  Google Scholar 

  154. Gudz, K. Y. et al. Pristine and antibiotic-loaded nanosheets/nanoneedles-based boron nitride films as a promising platform to suppress bacterial and fungal infections. ACS Appl. Mater. Interfaces 12, 42485–42498 (2020).

    Article  Google Scholar 

  155. Jiang, R. et al. Thermoresponsive nanostructures: from mechano-bactericidal action to bacteria release. ACS Appl. Mater. Interfaces 13, 60865–60877 (2021).

    Article  Google Scholar 

  156. Song, H. et al. Silica nanopollens enhance adhesion for long-term bacterial inhibition. J. Am. Chem. Soc. 138, 6455–6462 (2016).

    Article  Google Scholar 

  157. Häffner, S. M. et al. Membrane interactions of virus-like mesoporous silica nanoparticles. ACS Nano 15, 6787–6800 (2021). This article reports spiky particles functionalized with bactericidal peptide LL-37 that demonstrate bacterial membrane disruption and membrane-targeted delivery of LL-37 to improve antimicrobial activities.

    Article  Google Scholar 

  158. Song, Y. et al. Cationic and anionic antimicrobial agents co-templated mesostructured silica nanocomposites with a spiky nanotopology and enhanced biofilm inhibition performance. Nano-Micro Lett. 14, 83 (2022).

    Article  Google Scholar 

  159. Chauhan, G. et al. Nanotechnology for COVID-19: therapeutics and vaccine research. ACS Nano 14, 7760–7782 (2020).

    Article  Google Scholar 

  160. Blakney, A. K., Ball, C., Krogstad, E. A. & Woodrow, K. A. Electrospun fibers for vaginal anti-HIV drug delivery. Antivir. Res. 100, S9–S16 (2013).

    Article  Google Scholar 

  161. Xue, X., Ball, J. K., Alexander, C. & Alexander, M. R. All surfaces are not equal in contact transmission of SARS-CoV-2. Matter 3, 1433–1441 (2020).

    Article  Google Scholar 

  162. Nie, C. et al. Topology-matching design of an influenza-neutralizing spiky nanoparticle-based inhibitor with a dual mode of action. Angew. Chem. 132, 15662–15666 (2020).

    Article  Google Scholar 

  163. Blum, A. P. et al. Stimuli-responsive nanomaterials for biomedical applications. J. Am. Chem. Soc. 137, 2140–2154 (2015).

    Article  Google Scholar 

  164. Lock, J. Y., Carlson, T. L. & Carrier, R. L. Mucus models to evaluate the diffusion of drugs and particles. Adv. Drug Deliv. Rev. 124, 34–49 (2018).

    Article  Google Scholar 

  165. Allen, T. M. et al. Humanized immune system mouse models: progress, challenges and opportunities. Nat. Immunol. 20, 770–774 (2019).

    Article  Google Scholar 

  166. Semaniakou, A., Croll, R. P. & Chappe, V. Animal models in the pathophysiology of cystic fibrosis. Front. Pharmacol. 9, 1475 (2019).

    Article  Google Scholar 

  167. Liu, R. H., Ong, C. S., Fukunishi, T., Ong, K. & Hibino, N. Review of vascular graft studies in large animal models. Tissue Eng. Part. B Rev. 24, 133–143 (2018).

    Article  Google Scholar 

  168. Desai, T. A., Eniola-Adefeso, O., Stevens, K. R., Vazquez, M. & Imoukhuede, P. Perspectives on disparities in scientific visibility. Nat. Rev. Mater. 6, 556–559 (2021).

    Article  Google Scholar 

  169. Rowson, B. et al. Citation diversity statement in BMES journals. Ann. Biomed. Eng. 49, 947–949 (2021).

    Article  Google Scholar 

  170. Zurn, P., Bassett, D. S. & Rust, N. C. The citation diversity statement: a practice of transparency, a way of life. Trends Cogn. Sci. 24, 669–672 (2020).

    Article  Google Scholar 

  171. Caplar, N., Tacchella, S. & Birrer, S. Quantitative evaluation of gender bias in astronomical publications from citation counts. Nat. Astron. 1, 0141 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

J.A.F. was supported by the UCSF HIVE postdoctoral fellowship. X.H. was supported by a UCSF Program for Breakthrough Biomedical Research (PBBR) postdoctoral independent research grant and a Li Foundation fellowship.

Author information

Authors and Affiliations

Authors

Contributions

J.A.F. and T.A.D. conceived the idea of the Review and developed the outline. J.A.F., C.H. and X.H. surveyed relevant literature and wrote the manuscript. All authors contributed to the discussion, editing and finalizing of the content.

Corresponding author

Correspondence to Tejal A. Desai.

Ethics declarations

Competing interests

T.A.D. is a scientific founder of Oculinea, Encellin, VasaRx, and Biothelium and received grant funding from Kimberly Clarke and Roche related to the work described herein. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Bioengineering thanks Krasimir Vasilev and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Centers for Disease Control and Prevention (CDC)/C.D. Humphrey; T. G. Ksiazek: https://www.cdc.gov/sars/lab/images.html

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Finbloom, J.A., Huynh, C., Huang, X. et al. Bioinspired nanotopographical design of drug delivery systems. Nat Rev Bioeng 1, 139–152 (2023). https://doi.org/10.1038/s44222-022-00010-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44222-022-00010-8

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research