[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Advances in targeted nanotherapeutics: From bioconjugation to biomimicry

  • Review Article
  • Published:
Nano Research Aims and scope

Abstract

Since the emergence of cancer nanomedicine, researchers have had intense interest in developing nanoparticles (NPs) that can specifically target diseased sites while avoiding healthy tissue to mitigate the off-target effects seen with conventional treatments like chemotherapy. Initial endeavors focused on the bioconjugation of targeting agents to NPs, and more recently, researchers have begun to develop biomimetic NP platforms that can avoid immune recognition to maximally accumulate in tumors. In this review, we describe the advantages and limitations of each of these targeting strategies. First, we review developments in bioconjugation strategies, where NPs are coated with biomolecules such as antibodies, aptamers, peptides, and small molecules to enable cell-specific binding. While bioconjugated NPs offer many exciting features and have improved pharmacokinetics and biodistribution relative to unmodified NPs, they are still recognized by the body as “foreign”, resulting in their clearance by the mononuclear phagocytic system (MPS). To overcome this limitation, researchers have recently begun to investigate biomimetic approaches that can hide NPs from immune recognition and reduce clearance by the MPS. These biomimetic NPs fall into two distinct categories: synthetic NPs that present naturally occurring structures, and NPs that are completely disguised by natural structures. Overall, bioconjugated and biomimetic NPs have substantial potential to improve upon conventional treatments by reducing off-target effects through site-specific delivery, and they show great promise for future standards of care. Here, we provide a summary of each strategy, discuss considerations for their design moving forward, and highlight their potential clinical impact on cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, Z. L.; Qiao, R. R.; Tang, N.; Lu, Z. W.; Wang, H.; Zhang, Z. X.; Xue, X. D.; Huang, Z. Y.; Zhang, S. R.; Zhang, G. X. et al. Active targeting theranostic iron oxide nanoparticles for MRI and magnetic resonance–guided focused ultrasound ablation of lung cancer. Biomaterials 2017, 127, 25–35.

    Google Scholar 

  2. El–Sayed, I. H.; Huang, X.; El–Sayed, M. A. Selective laser photo–thermal therapy of epithelial carcinoma using anti–EGFR antibody conjugated gold nanoparticles. Cancer Lett. 2006, 239, 129–135.

    Google Scholar 

  3. Damodaran, S.; Olson, E. M. Targeting the human epidermal growth factor receptor 2 pathway in breast cancer. Hosp. Pract. 2012, 40, 7–15.

    Google Scholar 

  4. Dehaini, D.; Fang, R. H.; Zhang, L. F. Biomimetic strategies for targeted nanoparticle delivery. Bioeng. Transl. Med. 2016, 1, 30–46.

    Google Scholar 

  5. Byrne, J. D.; Betancourt, T.; Brannon–Peppas, L. Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv. Drug Deliv. Rev. 2008, 60, 1615–1626.

    Google Scholar 

  6. Wang, M.; Thanou, M. Targeting nanoparticles to cancer. Pharmacol. Res. 2010, 62, 90–99.

    Google Scholar 

  7. Riley, R. S.; Day, E. S. Gold nanoparticle–mediated photothermal therapy: Applications and opportunities for multimodal cancer treatment. WIREs Nanomed. Nanobiotechnol. 2017, 9, e1449.

    Google Scholar 

  8. Kumar, A.; Ma, H. L.; Zhang, X.; Huang, K. Y.; Jin, S. B.; Liu, J.; Wei, T.; Cao, W. P.; Zou, G. Z.; Liang, X.–J. Gold nanoparticles functionalized with therapeutic and targeted peptides for cancer treatment. Biomaterials 2012, 33, 1180–1189.

    Google Scholar 

  9. Dam, D. H. M.; Culver, K. S. B.; Odom, T. W. Grafting aptamers onto gold nanostars increases in vitro efficacy in a wide range of cancer cell types. Mol. Pharm. 2014, 11, 580–587.

    Google Scholar 

  10. Lowery, A. R.; Gobin, A. M.; Day, E. S.; Halas, N. J.; West, J. L. Immunonanoshells for targeted photothermal ablation of tumor cells. Int. J. Nanomedicine 2006, 1, 149–154.

    Google Scholar 

  11. Loo, C.; Lowery, A.; Halas, N.; West, J.; Drezek, R. Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett. 2005, 5, 709–711.

    Google Scholar 

  12. Brannon–Peppas, L.; Blanchette, J. O. Nanoparticle and targeted systems for cancer therapy. Adv. Drug Deliv. Rev. 2012, 64, 206–212.

    Google Scholar 

  13. Hou, Y.; Zhou, J.; Gao, Z. Y.; Sun, X. Y.; Liu, C. Y.; Shangguan, D. H.; Yang, W. S.; Gao, M. Y. Proteaseactivated ratiometric fluorescent probe for pH mapping of malignant tumors. ACS Nano 2015, 9, 3199–3205.

    Google Scholar 

  14. Jeong, S.; Park, J. Y.; Cha, M. G.; Chang, H. J.; Kim, Y. I.; Kim, H.–M.; Jun, B.–H.; Lee, D. S.; Lee, Y.–S.; Jeong, J. M. et al. Highly robust and optimized conjugation of antibodies to nanoparticles using quantitatively validated protocols. Nanoscale 2017, 9, 2548–2555.

    Google Scholar 

  15. Kumar, S.; Aaron, J.; Sokolov, K. Directional conjugation of antibodies to nanoparticles for synthesis of multiplexed optical contrast agents with both delivery and targeting moieties. Nat. Protoc. 2008, 3, 314–320.

    Google Scholar 

  16. Joshi, P. P.; Yoon, S. J.; Hardin, W. G.; Emelianov, S.; Sokolov, K. V. Conjugation of antibodies to gold nanorods through Fc portion: Synthesis and molecular specific imaging. Bioconjug. Chem. 2013, 24, 878–888.

    Google Scholar 

  17. Parolo, C.; de la Escosura–Muñiz, A.; Polo, E.; Grazú, V.; de la Fuente, J. M.; Merkoçi, A. Design, preparation, and evaluation of a fixed–orientation antibody/gold–nanoparticle conjugate as an immunosensing label. ACS Appl. Mater. Interfaces 2013, 5, 10753–10759.

    Google Scholar 

  18. Moynihan, T. J. HER2–positive breast cancer: What is it? https://www.mayoclinic.org/breast–cancer/expert–answers/f aq–20058066 (accessed Mar 14, 2018).

    Google Scholar 

  19. Master, A. M.; Sen Gupta, A. EGF receptor–targeted nanocarriers for enhanced cancer treatment. Nanomedicine 2012, 7, 1895–1906.

    Google Scholar 

  20. Billingsley, M. M.; Riley, R. S.; Day, E. S. Antibodynanoparticle conjugates to enhance the sensitivity of ELISAbased detection methods. PLoS One 2017, 12, e0177592.

    Google Scholar 

  21. Bae, K. H.; Lee, K.; Kim, C.; Park, T. G. Surface functionalized hollow manganese oxide nanoparticles for cancer targeted siRNA delivery and magnetic resonance imaging. Biomaterials 2011, 32, 176–184.

    Google Scholar 

  22. Palanca–Wessels, M. C.; Booth, G. C.; Convertine, A. J.; Lundy, B. B.; Berguig, G. Y.; Press, M. F.; Stayton, P. S.; Press, O. W. Antibody targeting facilitates effective intratumoral siRNA nanoparticle delivery to HER2–overexpressing cancer cells. Oncotarget 2016, 7, 9561–9575.

    Google Scholar 

  23. Dilnawaz, F.; Singh, A.; Mohanty, C.; Sahoo, S. K. Dual drug loaded superparamagnetic iron oxide nanoparticles for targeted cancer therapy. Biomaterials 2010, 31, 3694–3706.

    Google Scholar 

  24. Riley, R. S.; Day, E. S. Frizzled7 antibody–functionalized nanoshells enable multivalent binding for Wnt signaling inhibition in triple negative breast cancer cells. Small 2017, 13, 1700544.

    Google Scholar 

  25. Scott, A. M.; Wolchok, J. D.; Old, L. J. Antibody therapy of cancer. Nat. Rev. Cancer 2012, 12, 278–287.

    Google Scholar 

  26. Jiang, W.; Kim, B. Y. S.; Rutka, J. T.; Chan, W. C. W. Nanoparticle–mediated cellular response is size–dependent. Nat. Nanotechnol. 2008, 3, 145–150.

    Google Scholar 

  27. Schardt, J. S.; Oubaid, J. M.; Williams, S. C.; Howard, J. L.; Aloimonos, C. M.; Bookstaver, M. L.; Lamichhane, T. N.; Sokic, S.; Liyasova, M. S.; O’Neill, M. et al. Engineered multivalency enhances affibody–based HER3 inhibition and downregulation in cancer cells. Mol. Pharmacol. 2017, 14, 1047–1056.

    Google Scholar 

  28. Prakash, J. S.; Rajamanickam, K. Aptamers and their significant role in cancer therapy and diagnosis. Biomedicines 2015, 3, 248–269.

    Google Scholar 

  29. Wu, X.; Chen, J.; Wu, M.; Zhao, J. X. Aptamers: Active targeting ligands for cancer diagnosis and therapy. Theranostics 2015, 5, 322–344.

    Google Scholar 

  30. Hicke, B. J.; Stephens, A. W.; Gould, T.; Chang, Y.–F.; Lynott, C. K.; Heil, J.; Borkowski, S.; Hilger, C.–S.; Cook, G.; Warren, S. et al. Tumor targeting by an aptamer. J. Nucl. Med. 2006, 47, 668–678.

    Google Scholar 

  31. Valetti, S.; Mura, S.; Noiray, M.; Arpicco, S.; Dosio, F.; Vergnaud, J.; Desmaële, D.; Stella, B.; Couvreur, P. Peptide conjugation: Before or after nanoparticle formation? Bioconjug. Chem. 2014, 25, 1971–1983.

    Google Scholar 

  32. Choi, H. S.; Liu, W. H.; Liu, F. B.; Nasr, K.; Misra, P.; Bawendi, M. G.; Frangioni, J. V. Design considerations for tumour–targeted nanoparticles. Nat. Nanotechnol. 2010, 5, 42–47.

    Google Scholar 

  33. Nasongkla, N.; Bey, E.; Ren, J. M.; Ai, H.; Khemtong, C.; Guthi, J. S.; Chin, S. F.; Sherry, A. D.; Boothman, D. A.; Gao, J. M. Multifunctional polymeric micelles as cancertargeted, MRI–ultrasensitive drug delivery systems. Nano Lett. 2006, 6, 2427–2430.

    Google Scholar 

  34. Xiong, X. B.; Lavasanifar, A. Traceable multifunctional micellar nanocarriers for cancer–targeted co–delivery of MDR–1 siRNA and doxorubicin. ACS Nano 2011, 5, 5202–5213.

    Google Scholar 

  35. Milane, L.; Duan, Z. F.; Amiji, M. Therapeutic efficacy and safety of paclitaxel/lonidamine loaded EGFR–targeted nanoparticles for the treatment of multi–drug resistant cancer. PLoS One 2011, 6, e24075.

    Google Scholar 

  36. Milane, L.; Duan, Z. F.; Amiji, M. Pharmacokinetics and biodistribution of lonidamine/paclitaxel loaded, EGFR–targeted nanoparticles in an orthotopic animal model of multi–drug resistant breast cancer. Nanomedicine 2011, 7, 435–444.

    Google Scholar 

  37. Reddy, G. R.; Bhojani, M. S.; McConville, P.; Moody, J.; Moffat, B. A.; Hall, D. E.; Kim, G.; Koo, Y. E. L.; Woolliscroft, M. J.; Sugai, J. V. et al. Vascular targeted nanoparticles for imaging and treatment of brain tumors. Clin. Cancer Res. 2006, 12, 6677–6686.

    Google Scholar 

  38. Sanna, V.; Nurra, S.; Pala, N.; Marceddu, S.; Pathania, D.; Neamati, N.; Sechi, M. Targeted nanoparticles for the delivery of novel bioactive molecules to pancreatic cancer cells. J. Med. Chem. 2016, 59, 5209–5220.

    Google Scholar 

  39. Aina, O. H.; Sroka, T. C.; Chen, M. L.; Lam, K. S. Therapeutic cancer targeting peptides. Biopolymers 2002, 66, 184–199.

    Google Scholar 

  40. Juliano, R. L.; Alam, R.; Dixit, V.; Kang, H. M. Celltargeting and cell–penetrating peptides for delivery of therapeutic and imaging agents. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2009, 1, 324–336.

    Google Scholar 

  41. Zwicke, G. L.; Mansoori, G. A.; Jeffery, C. J. Utilizing the folate receptor for active targeting of cancer nanotherapeutics. Nano Rev. 2012, 3, 18496.

    Google Scholar 

  42. Bazak, R.; Houri, M.; El Achy, S.; Kamel, S.; Refaat, T. Cancer active targeting by nanoparticles: A comprehensive review of literature. J. Cancer Res. Clin. Oncol. 2015, 141, 769–784.

    Google Scholar 

  43. Wang, C.; Cheng, L.; Liu, Z. Drug delivery with upconversion nanoparticles for multi–functional targeted cancer cell imaging and therapy. Biomaterials 2011, 32, 1110–1120.

    Google Scholar 

  44. Liu, T.; Zeng, L. L.; Jiang, W. T.; Fu, Y. T.; Zheng, W. J.; Chen, T. F. Rational design of cancer–targeted selenium nanoparticles to antagonize multidrug resistance in cancer cells. Nanomedicine 2015, 11, 947–958.

    Google Scholar 

  45. Yu, B.; Li, X. L.; Zheng, W. J.; Feng, Y. X.; Wong, Y.–S.; Chen, T. F. PH–responsive cancer–targeted selenium nanoparticles: A transformable drug carrier with enhanced theranostic effects. J. Mater. Chem. B 2014, 2, 5409–5418.

    Google Scholar 

  46. Zhang, Q.; Wang, X. L.; Li, P. Z.; Nguyen, K. T.; Wang, X. J.; Luo, Z.; Zhang, H. C.; Tan, N. S.; Zhao, Y. L. Biocompatible, uniform, and redispersible mesoporous silica nanoparticles for cancer–targeted drug delivery in vivo. Adv. Funct. Mater. 2014, 24, 2450–2461.

    Google Scholar 

  47. Huang, Y. Y.; He, L. Z.; Liu, W.; Fan, C. D.; Zheng, W. J.; Wong, Y. S.; Chen, T. F. Selective cellular uptake and induction of apoptosis of cancer–targeted selenium nanoparticles. Biomaterials 2013, 34, 7106–7116.

    Google Scholar 

  48. Valencia, P. M.; Pridgen, E. M.; Rhee, M.; Langer, R.; Farokhzad, O. C.; Karnik, R. Microfluidic platform for combinatorial synthesis and optimization of targeted nanoparticles for cancer therapy. ACS Nano 2013, 7, 10671–10680.

    Google Scholar 

  49. Assanhou, A. G.; Li, W. Y.; Zhang, L.; Xue, L. J.; Kong, L. Y.; Sun, H. B.; Mo, R.; Zhang, C. Reversal of multidrug resistance by co–delivery of paclitaxel and lonidamine using a tpgs and hyaluronic acid dual–functionalized liposome for cancer treatment. Biomaterials 2015, 73, 284–295.

    Google Scholar 

  50. Xiao, B.; Han, M. K.; Viennois, E.; Wang, L. X.; Zhang, M. Z.; Si, X. Y.; Merlin, D. Hyaluronic acid–functionalized polymeric nanoparticles for colon cancer–targeted combination chemotherapy. Nanoscale 2015, 7, 17745–17755.

    Google Scholar 

  51. Dai, Q.; Walkey, C.; Chan, W. C. W. Polyethylene glycol backfilling mitigates the negative impact of the protein corona on nanoparticle cell targeting. Angew. Chem., Int. Ed. 2014, 53, 5093–5096.

    Google Scholar 

  52. Zhou, H.; Fan, Z. Y.; Deng, J. J.; Lemons, P. K.; Arhontoulis, D. C.; Bowne, W. B.; Cheng, H. Hyaluronidase in nanocarrier PEG shell for enhanced tumor penetration and highly efficient antitumor efficacy. Nano Lett. 2016, 16, 3268–3277.

    Google Scholar 

  53. Wilhelm, S.; Tavares, A. J.; Dai, Q.; Ohta, S.; Audet, J.; Dvorak, H. F.; Chan, W. C. W. Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 2016, 1, 16014.

    Google Scholar 

  54. Hauert, S.; Berman, S.; Nagpal, R.; Bhatia, S. N. A computational framework for identifying design guidelines to increase the penetration of targeted nanoparticles into tumors. Nano Today 2013, 8, 566–576.

    Google Scholar 

  55. Kroll, A. V.; Fang, R. H.; Zhang, L. F. Biointerfacing and applications of cell membrane–coated nanoparticles. Bioconjug. Chem. 2017, 28, 23–32.

    Google Scholar 

  56. Verhoef, J. J.; Anchordoquy, T. J. Questioning the use of pegylation for drug delivery. Drug Deliv. Transl. Res. 2013, 3, 499–503.

    Google Scholar 

  57. Rodriguez, P. L.; Harada, T.; Christian, D. A.; Pantano, D. A.; Tsai, R. K.; Discher, D. E. Minimal “self” peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles. Science 2013, 339, 971–975.

    Google Scholar 

  58. Zhang, Z. H.; Chen, J.; Ding, L. L.; Jin, H.; Lovell, J. F.; Corbin, I. R.; Cao, W. G.; Lo, P. C.; Yang, M.; Tsao, M. S. et al. HDL–mimicking peptide–lipid nanoparticles with improved tumor targeting. Small 2010, 6, 430–437.

    Google Scholar 

  59. Li, J. H.; Ai, Y. W.; Wang, L. H.; Bu, P. C.; Sharkey, C. C.; Wu, Q. H.; Wun, B.; Roy, S.; Shen, X. L.; King, M. R. Targeted drug delivery to circulating tumor cells via platelet membrane–functionalized particles. Biomaterials 2016, 76, 52–65.

    Google Scholar 

  60. Rohovie, M. J.; Nagasawa, M.; Swartz, J. R. Virus–like particles: Next–generation nanoparticles for targeted therapeutic delivery. Bioeng. Transl. Med. 2017, 2, 43–57.

    Google Scholar 

  61. Dehaini, D.; Wei, X.; Fang, R. H.; Masson, S.; Angsantikul, P.; Luk, B. T.; Zhang, Y.; Ying, M.; Jiang, Y.; Kroll, A. V. et al. Erythrocyte–platelet hybrid membrane coating for enhanced nanoparticle functionalization. Adv. Mater. 2017, 29, 1606209.

    Google Scholar 

  62. Zhu, J. Y.; Zheng, D. W.; Zhang, M. K.; Yu, W. Y.; Qiu, W. X.; Hu, J. J.; Feng, J.; Zhang, X. Z. Preferential cancer cell self–recognition and tumor self–targeting by coating nanoparticles with homotypic cancer cell membranes. Nano Lett. 2016, 16, 5895–5901.

    Google Scholar 

  63. Hu, C. M. J.; Fang, R. H.; Wang, K. C.; Luk, B. T.; Thamphiwatana, S.; Dehaini, D.; Nguyen, P.; Angsantikul, P.; Wen, C. H.; Kroll, A. V. et al. Nanoparticle biointerfacing by platelet membrane cloaking. Nature 2015, 526, 118–121.

    Google Scholar 

  64. Hu, C.–M. J.; Zhang, L.; Aryal, S.; Cheung, C.; Fang, R. H.; Zhang, L. F. Erythrocyte membrane–camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc. Natl. Acad. Sci. USA 2011, 108, 10980–10985.

    Google Scholar 

  65. Luk, B. T.; Zhang, L. F. Cell membrane–camouflaged nanoparticles for drug delivery. J. Control. Release 2015, 220, 600–607.

    Google Scholar 

  66. McMahon, K. M.; Foi, L.; Angeloni, N. L.; Giles, F. J.; Gordon, L. I.; Thaxton, C. S. Synthetic high–density lipoprotein–like nanoparticles as cancer therapy. In Nanotechnology–Based Precision Tools for the Detection and Treatment of Cancer; Mirkin, C. A.; Meade, T. J.; Petrosko, S. H.; Stegh, A. H., Eds.; Springer: Switzerland, 2015; Vol. 166, pp 129–150.

    Google Scholar 

  67. Marrache, S.; Dhar, S. Biodegradable synthetic high–density lipoprotein nanoparticles for atherosclerosis. Proc. Natl. Acad. Sci. USA 2013, 110, 9445–9450.

    Google Scholar 

  68. McMahon, K. M.; Mutharasan, R. K.; Tripathy, S.; Veliceasa, D.; Bobeica, M.; Shumaker, D. K.; Luthi, A. J.; Helfand, B. T.; Ardehali, H.; Mirkin, C. A. et al. Biomimetic high density lipoprotein nanoparticles for nucleic acid delivery. Nano Lett. 2011, 11, 1208–1214.

    Google Scholar 

  69. Simberg, D.; Duza, T.; Park, J. H.; Essler, M.; Pilch, J.; Zhang, L. L.; Derfus, A. M.; Yang, M.; Hoffman, R. M.; Bhatia, S. et al. Biomimetic amplification of nanoparticle homing to tumors. Proc. Natl. Acad. Sci. USA 2007, 104, 932–936.

    Google Scholar 

  70. Wei, X. L.; Gao, J.; Fang, R. H.; Luk, B. T.; Kroll, A. V; Dehaini, D.; Zhou, J. R.; Kim, H. W.; Gao, W. W.; Lu, W. Y. et al. Nanoparticles camouflaged in platelet membrane coating as an antibody decoy for the treatment of immune thrombocytopenia. Biomaterials 2016, 111, 116–123.

    Google Scholar 

  71. Luk, B. T.; Fang, R. H.; Hu, C. M. J.; Copp, J. A.; Thamphiwatana, S.; Dehaini, D.; Gao, W. W.; Zhang, K.; Li, S. L.; Zhang, L. F. Safe and immunocompatible nanocarriers cloaked in RBC membranes for drug delivery to treat solid tumors. Theranostics 2016, 6, 1004–1011.

    Google Scholar 

  72. Lai, P.–Y.; Huang, R.–Y.; Lin, S.–Y.; Lin, Y.–H.; Chang, C.–W. Biomimetic stem cell membrane–camouflaged iron oxide nanoparticles for theranostic applications. RSC Adv. 2015, 5, 98222–98230.

    Google Scholar 

  73. Parodi, A.; Quattrocchi, N.; Van De Ven, A. L.; Chiappini, C.; Evangelopoulos, M.; Martinez, J. O.; Brown, B. S.; Khaled, S. Z.; Yazdi, I. K.; Enzo, M. V. et al. Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell–like functions. Nat. Nanotechnol. 2013, 8, 61–68.

    Google Scholar 

  74. Zhai, Y. H.; Su, J. H.; Ran, W.; Zhang, P. C.; Yin, Q.; Zhang, Z. W.; Yu, H. J.; Li, Y. P. Preparation and application of cell membrane–camouflaged nanoparticles for cancer therapy. Theranostics 2017, 7, 2575–2592.

    Google Scholar 

  75. Hu, Q. Y.; Sun, W. J.; Qian, C. G.; Wang, C.; Bomba, H. N.; Gu, Z. Anticancer platelet–mimicking nanovehicles. Adv. Mater. 2015, 27, 7043–7050.

    Google Scholar 

  76. Toledano Furman, N. E.; Lupu–Haber, Y.; Bronshtein, T.; Kaneti, L.; Letko, N.; Weinstein, E.; Baruch, L.; Machluf, M. Reconstructed stem cell nanoghosts: A natural tumor targeting platform. Nano Lett. 2013, 13, 3248–3255.

    Google Scholar 

  77. Gao, C. Y.; Lin, Z. H.; Jurado–Sánchez, B.; Lin, X. K.; Wu, Z. G.; He, Q. Stem cell membrane–coated nanogels for highly efficient in vivo tumor targeted drug delivery. Small 2016, 12, 4056–4062.

    Google Scholar 

  78. Xuan, M. J.; Shao, J. X.; Dai, L. R.; He, Q.; Li, J. B. Macrophage cell membrane camouflaged mesoporous silica nanocapsules for in vivo cancer therapy. Adv. Healthc. Mater. 2015, 4, 1645–1652.

    Google Scholar 

  79. Beduneau, A.; Ma, Z.; Grotepas, C. B.; Kabanov, A.; Rabinow, B. E.; Gong, N.; Mosley, R. L.; Dou, H.; Boska, M. D.; Gendelman, H. E. Facilitated monocyte–macrophage uptake and tissue distribution of superparmagnetic iron–oxide nanoparticles. PLoS One 2009, 4, e4343.

    Google Scholar 

  80. Pascucci, L.; Coccè, V.; Bonomi, A.; Ami, D.; Ceccarelli, P.; Ciusani, E.; Viganò, L.; Locatelli, A.; Sisto, F.; Doglia, S. M. et al. Paclitaxel is incorporated by mesenchymal stromal cells and released in exosomes that inhibit in vitro tumor growth: A new approach for drug delivery. J. Control. Release 2014, 192, 262–270.

    Google Scholar 

  81. Ohno, S. I.; Takanashi, M.; Sudo, K.; Ueda, S.; Ishikawa, A.; Matsuyama, N.; Fujita, K.; Mizutani, T.; Ohgi, T.; Ochiya, T. et al. Systemically injected exosomes targeted to EGFR deliver antitumor microrna to breast cancer cells. Mol. Ther. 2013, 21, 185–191.

    Google Scholar 

  82. Tian, Y. H.; Li, S. P.; Song, J.; Ji, T. J.; Zhu, M. T.; Anderson, G. J.; Wei, J. Y.; Nie, G. J. A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials 2014, 35, 2383–2390.

    Google Scholar 

  83. Alhasan, A. H.; Patel, P. C.; Choi, C. H. J.; Mirkin, C. A. Exosome encased spherical nucleic acid gold nanoparticle conjugates as potent microRNA regulation agents. Small 2014, 10, 186–192.

    Google Scholar 

  84. Berleman, J.; Auer, M. The role of bacterial outer membrane vesicles for intra–and interspecies delivery. Environ. Microbiol. 2013, 15, 347–354.

    Google Scholar 

  85. Gujrati, V.; Kim, S.; Kim, S. H.; Min, J. J.; Choy, H. E.; Kim, S. C.; Jon, S. Bioengineered bacterial outer membrane vesicles as cell–specific drug–delivery vehicles for cancer therapy. ACS Nano 2014, 8, 1525–1537.

    Google Scholar 

  86. Zhou, H.; Fan, Z. Y.; Lemons, P. K.; Cheng, H. A facile approach to functionalize cell membrane–coated nanoparticles. Theranostics 2016, 6, 1012–1022.

    Google Scholar 

  87. Xuan, M. J.; Shao, J. X.; Dai, L. R.; Li, J. B.; He, Q. Macrophage cell membrane camouflaged Au nanoshells for in vivo prolonged circulation life and enhanced cancer photothermal therapy. ACS Appl. Mater. Interfaces 2016, 8, 9610–9618.

    Google Scholar 

  88. Chen, Z.; Zhao, P. F.; Luo, Z. Y.; Zheng, M. B.; Tian, H.; Gong, P.; Gao, G. H.; Pan, H.; Liu, L. L.; Ma, A. Q. et al. Cancer cell membrane–biomimetic nanoparticles for homologous–targeting dual–modal imaging and photothermal therapy. ACS Nano 2016, 10, 10049–10057.

    Google Scholar 

  89. Sun, H. P.; Su, J. H.; Meng, Q. S.; Yin, Q.; Chen, L. L.; Gu, W. W.; Zhang, P. C.; Zhang, Z. W.; Yu, H. J.; Wang, S. L. et al. Cancer–cell–biomimetic nanoparticles for targeted therapy of homotypic tumors. Adv. Mater. 2016, 28, 9581–9588.

    Google Scholar 

  90. Fang, R. H.; Hu, C. M. J.; Luk, B. T.; Gao, W. W.; Copp, J. A.; Tai, Y. Y.; O’Connor, D. E.; Zhang, L. F. Cancer cell membrane–coated nanoparticles for anticancer vaccination and drug delivery. Nano Lett. 2014, 14, 2181–2188.

    Google Scholar 

  91. Kennedy, L. C.; Bear, A. S.; Young, J. K.; Lewinski, N. A.; Kim, J.; Foster, A. E.; Drezek, R. A. T cells enhance gold nanoparticle delivery to tumors in vivo. Nanoscale Res. Lett. 2011, 6, 283.

    Google Scholar 

  92. Sadhukha, T.; O’Brien, T. D.; Prabha, S. Nano–engineered mesenchymal stem cells as targeted therapeutic carriers. J. Control. Release 2014, 196, 243–251.

    Google Scholar 

  93. Choi, M.–R.; Stanton–Maxey, K. J.; Stanley, J. K.; Levin, C. S.; Bardhan, R.; Akin, D.; Badve, S.; Sturgis, J.; Robinson, J. P.; Bashir, R. et al. A cellular trojan horse for delivery of therapeutic nanoparticles into tumors. Nano Lett. 2007, 7, 3759–3765.

    Google Scholar 

  94. Roger, M.; Clavreul, A.; Venier–Julienne, M. C.; Passirani, C.; Sindji, L.; Schiller, P.; Montero–Menei, C.; Menei, P. Mesenchymal stem cells as cellular vehicles for delivery of nanoparticles to brain tumors. Biomaterials 2010, 31, 8393–8401.

    Google Scholar 

  95. Pang, L.; Qin, J.; Han, L. M.; Zhao, W. J.; Liang, J. M.; Xie, Z. Y.; Yang, P.; Wang, J. X. Exploiting macrophages as targeted carrier to guide nanoparticles into glioma. Oncotarget 2016, 7, 37081–37091.

    Google Scholar 

  96. Steinfeld, U.; Pauli, C.; Kaltz, N.; Bergemann, C.; Lee, H. H. T lymphocytes as potential therapeutic drug carrier for cancer treatment. Int. J. Pharm. 2006, 311, 229–236.

    Google Scholar 

  97. Tan, S. W.; Wu, T. T.; Zhang, D.; Zhang, Z. P. Cell or cell membrane–based drug delivery systems. Theranostics 2015, 5, 863–881.

    Google Scholar 

  98. Stephan, M. T.; Moon, J. J.; Um, S. H.; Bershteyn, A.; Irvine, D. J. Therapeutic cell engineering with surfaceconjugated synthetic nanoparticles. Nat. Med. 2010, 16, 1035–1041.

    Google Scholar 

  99. Cheng, H.; Kastrup, C. J.; Ramanathan, R.; Siegwart, D. J.; Ma, M. L.; Bogatyrev, S. R.; Xu, Q. B.; Whitehead, K. A.; Langer, R.; Anderson, D. G. Nanoparticulate cellular patches for cell–mediated tumoritropic delivery. ACS Nano 2010, 4, 625–631.

    Google Scholar 

  100. de Almeida, C. E. B.; Nascimento Alves, L.; Rocha, H. F.; Cabral–Neto, J. B.; Missailidis, S. Aptamer delivery of siRNA, radiopharmaceutics and chemotherapy agents in cancer. Int. J. Pharm. 2017, 525, 334–342.

    Google Scholar 

  101. Chen, S. Y.; Zhao, X. R.; Chen, J. Y.; Chen, J.; Kuznetsova, L.; Wong, S. S.; Ojima, I. Mechanism–based tumor–targeting drug delivery system. validation of efficient vitamin receptor–mediated endocytosis and drug release. Bioconjug. Chem. 2010, 21, 979–987.

    Google Scholar 

  102. Biabanikhankahdani, R.; Alitheen, N. B. M.; Ho, K. L.; Tan, W. S. PH–responsive virus–like nanoparticles with enhanced tumour–targeting ligands for cancer drug delivery. Sci. Rep. 2016, 6, 37891.

    Google Scholar 

  103. Kelley, E. G.; Albert, J. N. L.; Sullivan, M. O.; Epps, T. H., III. Stimuli–responsive copolymer solution and surface assemblies for biomedical applications. Chem. Soc. Rev. 2013, 42, 7057–7071.

    Google Scholar 

  104. Greco, C. T.; Epps, T. H.; Sullivan, M. O. Mechanistic design of polymer nanocarriers to spatiotemporally control gene silencing. ACS Biomater. Sci. Eng. 2016, 2, 1582–1594.

    Google Scholar 

  105. Scott, A. M.; Allison, J. P.; Wolchok, J. D. Monoclonal antibodies in cancer therapy. Cancer Immun. 2012, 12, 14.

    Google Scholar 

  106. Sanna, V.; Pala, N.; Sechi, M. Targeted therapy using nanotechnology: Focus on cancer. Int. J. Nanomedicine 2014, 9, 467–483.

    Google Scholar 

  107. Anselmo, A. C.; Mitragotri, S. Nanoparticles in the clinic. Bioeng. Transl. Med. 2016, 1, 10–29.

    Google Scholar 

  108. Kennedy, P. J.; Oliveira, C.; Granja, P. L.; Sarmento, B. Antibodies and associates: Partners in targeted drug delivery. Pharmacol. Ther. 2017, 177, 129–145.

    Google Scholar 

  109. Bernardi, R. J.; Lowery, A. R.; Thompson, P. A.; Blaney, S. M.; West, J. L. Immunonanoshells for targeted photothermal ablation in medulloblastoma and glioma: An in vitro evaluation using human cell lines. J. Neurooncol. 2008, 86, 165–172.

    Google Scholar 

  110. Park, J.–H.; von Maltzahn, G.; Xu, M. J.; Fogal, V.; Kotamraju, V. R.; Ruoslahti, E.; Bhatia, S. N.; Sailor, M. J. Cooperative nanomaterial system to sensitize, target, and treat tumors. Proc. Natl. Acad. Sci. USA 2010, 107, 981–986.

    Google Scholar 

  111. Rink, J. S.; Plebanek, M. P.; Tripathy, S.; Thaxton, C. S. Update on current and potential nanoparticle cancer therapies. Curr. Opin. Oncol. 2013, 25, 646–651.

    Google Scholar 

  112. Akin, D.; Sturgis, J.; Ragheb, K.; Sherman, D.; Burkholder, K.; Robinson, J. P.; Bhunia, A. K.; Mohammed, S.; Bashir, R. Bacteria–mediated delivery of nanoparticles and cargo into cells. Nat. Nanotechnol. 2007, 2, 441–449.

    Google Scholar 

  113. Luo, C. H.; Huang, C. T.; Su, C. H.; Yeh, C. S. Bacteriamediated hypoxia–specific delivery of nanoparticles for tumors imaging and therapy. Nano Lett. 2016, 16, 3493–3499.

    Google Scholar 

  114. Wegmann, U.; Carvalho, A. L.; Stocks, M.; Carding, S. R. Use of genetically modified bacteria for drug delivery in humans: Revisiting the safety aspect. Sci. Rep. 2017, 7, 2294.

    Google Scholar 

  115. Blanco, E.; Shen, H. F.; Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 2015, 33, 941–951.

    Google Scholar 

  116. Balmert, S. C.; Little, S. R. Biomimetic delivery with micro–and nanoparticles. Adv. Mater. 2012, 24, 3757–3778.

    Google Scholar 

  117. Meyer, R. A.; Sunshine, J. C.; Green, J. J. Biomimetic particles as therapeutics. Trends Biotechnol. 2015, 33, 514–524.

    Google Scholar 

  118. Kelly Scientific Publications. Advanced and Targeted Drug Delivery Market Segmentation, Analysis, & Forecast to 2021. https://www.researchandmarkets.com/research/m3gm88/advanced_and (accessed Mar 14, 2018).

  119. Grand View Research. Nanomedicine Market Size Worth $350.8 Billion by 2025. https://www.grandviewresearch.com/press–release/global–nanomedicine–market (accessed Mar 14, 2018).

  120. Huang, C. C.; Chiang, C. K.; Lin, Z. H.; Lee, K. H.; Chang, H. T. Bioconjugated gold nanodots and nanoparticles for protein assays based on photoluminescence quenching. Anal. Chem. 2008, 80, 1497–1504.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institute of General Medical Sciences of the National Institutes of Health under Award Number R35GM119659, and by a grant from the W.M. Keck Foundation. R. S. R. received support from an American Association of University Women Dissertation Fellowship. The content is solely the responsibility of the authors and does not necessarily reflect the views of the funding agencies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emily S. Day.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valcourt, D.M., Harris, J., Riley, R.S. et al. Advances in targeted nanotherapeutics: From bioconjugation to biomimicry. Nano Res. 11, 4999–5016 (2018). https://doi.org/10.1007/s12274-018-2083-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-2083-z

Keywords