[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Macroscopic patterns of interacting contagions are indistinguishable from social reinforcement

Abstract

From ‘fake news’ to innovative technologies, many contagions spread as complex contagions via a process of social reinforcement, where multiple exposures are distinct from prolonged exposure to a single source1. Contrarily, biological agents such as Ebola or measles are typically thought to spread as simple contagions2. Here, we demonstrate that these different spreading mechanisms can have indistinguishable population-level dynamics once multiple contagions interact. In the social context, our results highlight the challenge of identifying and quantifying spreading mechanisms, such as social reinforcement3, in a world where an innumerable number of ideas, memes and behaviours interact. In the biological context, this parallel allows the use of complex contagions to effectively quantify the non-trivial interactions of infectious diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Analytical solutions of both susceptible–infectious–susceptible (SIS) ordinary differential equation systems from Box 1 for both interacting simple contagions and complex contagions.
Fig. 2: Statistics of SIS simulations of simple, interacting and complex contagions.
Fig. 3: Signatures of non-interacting and interacting SIR epidemics.
Fig. 4: Complexity of real social and epidemiological contagions.

Similar content being viewed by others

Data availability

The data represented in Figs. 14 are available as Source Data. Raw data and processing scripts are available online (https://github.com/jg-you/complex-coinfection-inference/; https://github.com/Emergent-Epidemics/Puerto_Rico_Arbovirus_Data).

Code availability

The inference software is available online (https://github.com/jg-you/complex-coinfection-inference/).

References

  1. Lehmann S. and Ahn Y.-Y. Complex Spreading Phenomena in Social Systems (Springer, 2018).

  2. Anderson R. M. and May R. M. Infectious Diseases of Humans: Dynamics and Control (Oxford Univ. Press, 1992).

  3. Centola, D. The spread of behavior in an online social network experiment. Science 329, 1194–1197 (2010).

    ADS  Google Scholar 

  4. Plan of Action for Maintaining Measles, Rubella, and Congenital Rubella Syndrome Elimination in the Region of the Americas: Final Report (PAHO, 2016); http://www.paho.org/hq/index.php?option=com_docman&task=doc_download&gid=35681&Itemid=270&lang=en

  5. Dabbagh, A. et al. Progress toward regional measles elimination worldwide, 2000–2017. Morb. Mortal. Wkly Rep. 67, 1323 (2018).

    Google Scholar 

  6. Fraser, B. Measles outbreak in the Americas. Lancet 392, 373 (2018).

    Google Scholar 

  7. Elidio, G. A. et al. Measles outbreak: preliminary report on a case series of the first 8,070 suspected cases, Manaus, Amazonas state, Brazil, February to November 2018. Eurosurveillance 24, 1800663 (2019).

    Google Scholar 

  8. Friedrich, M. Measles cases rise around the globe. J. Am. Med. Assoc. 321, 238–238 (2019).

    Google Scholar 

  9. Thornton, J. Measles cases in Europe tripled from 2017 to 2018. Br. Med. J. 364, 1634 (2019).

    Google Scholar 

  10. Measles Cases and Outbreaks (US CDC, accessed 18 February 2019); https://www.cdc.gov/measles/cases-outbreaks.html

  11. Majumder, M. S., Cohn, E. L., Mekaru, S. R., Huston, J. E. & Brownstein, J. S. Substandard vaccination compliance and the 2015 measles outbreak. J. Am. Med. Assoc. Pediatr. 169, 494–495 (2015).

    Google Scholar 

  12. Phadke, V. K., Bednarczyk, R. A., Salmon, D. A. & Omer, S. B. Association between vaccine refusal and vaccine-preventable diseases in the United States: a review of measles and pertussis. J. Am. Med. Assoc. 315, 1149–1158 (2016).

    Google Scholar 

  13. Melegaro, A. Measles vaccination: no time to rest. Lancet Glob. Health 7, e282–e283 (2019).

    Google Scholar 

  14. Paniz-Mondolfi, A. et al. Resurgence of vaccine-preventable diseases in Venezuela as a regional public health threat in the Americas. Emerg. Infect. Dis. 25, 625–632 (2019).

    Google Scholar 

  15. Salmon, D. A. et al. Health consequences of religious and philosophical exemptions from immunization laws: individual and societal risk of measles. J. Am. Med. Assoc. 282, 47–53 (1999).

    Google Scholar 

  16. Papachrisanthou, M. M. & Davis, R. L. The resurgence of measles, mumps, and pertussis. J. Nurse Pract. 15, 391–395 (2019).

    Google Scholar 

  17. McHale, P., Keenan, A. & Ghebrehewet, S. Reasons for measles cases not being vaccinated with MMR: investigation into parents’ and carers’ views following a large measles outbreak. Epidemiol. Infect. 144, 870–875 (2016).

    Google Scholar 

  18. Sansonetti, P. J. Measles 2018: a tale of two anniversaries. EMBO Mol. Med. 10, e9176 (2018).

    Google Scholar 

  19. Mavragani, A. & Ochoa, G. The Internet and the anti-vaccine movement: tracking the 2017 EU measles outbreak. Big Data Cogn. Comput. 2, 2 (2018).

    Google Scholar 

  20. Van Mieghem, P. & Van de Bovenkamp, R. Non-Markovian infection spread dramatically alters the susceptible–infected–susceptible epidemic threshold in networks. Phys. Rev. Lett. 110, 108701 (2013).

    ADS  Google Scholar 

  21. Pastor-Satorras, R., Castellano, C. & Van Mieghem, P. Epidemic processes in complex networks. Rev. Mod. Phys. 87, 925 (2015).

    ADS  MathSciNet  Google Scholar 

  22. Ross R. The Prevention of Malaria (Dutton, 1910).

  23. Lipsitch, M., Cohen, T., Murray, M. & Levin, B. R. Antiviral resistance and the control of pandemic influenza. PLoS Med. 4, e15 (2007).

    Google Scholar 

  24. Centola, D. & Macy, M. Complex contagions and the weakness of long ties. Am. J. Sociol. 113, 702–734 (2007).

    Google Scholar 

  25. Weng, L., Menczer, F. & Ahn, Y.-Y. Virality prediction and community structure in social networks. Sci. Rep. 3, 2522 (2013).

    ADS  Google Scholar 

  26. Mønsted, B., Sapieżyński, P., Ferrara, E. & Lehmann, S. Evidence of complex contagion of information in social media: an experiment using Twitter bots. PloS ONE 12, e0184148 (2017).

    Google Scholar 

  27. Liu, W.-m, Levin, S. A. & Iwasa, Y. Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models. J. Math. Biol. 23, 187–204 (1986).

    MathSciNet  MATH  Google Scholar 

  28. Dodds, P. S. & Watts, D. J. Universal behavior in a generalized model of contagion. Phys. Rev. Lett. 92, 218701 (2004).

    ADS  Google Scholar 

  29. Hébert-Dufresne, L., Patterson-Lomba, O., Goerg, G. M. & Althouse, B. M. Pathogen mutation modeled by competition between site and bond percolation. Phys. Rev. Lett. 110, 108103 (2013).

    ADS  Google Scholar 

  30. O’Sullivan, D. J., O’Keeffe, G. J., Fennell, P. G. & Gleeson, J. P. Mathematical modeling of complex contagion on clustered networks. Front. Phys. 3, 71 (2015).

    Google Scholar 

  31. Funk, S. & Jansen, V. A. Interacting epidemics on overlay networks. Phys. Rev. E 81, 036118 (2010).

    ADS  Google Scholar 

  32. Marceau, V., Noël, P.-A., Hébert-Dufresne, L., Allard, A. & Dubé, L. J. Modeling the dynamical interaction between epidemics on overlay networks. Phys. Rev. E 84, 026105 (2011).

    ADS  Google Scholar 

  33. Bauch, C. T. & Galvani, A. P. Social factors in epidemiology. Science 342, 47–49 (2013).

    ADS  Google Scholar 

  34. Fu, F., Christakis, N. A. & Fowler, J. H. Dueling biological and social contagions. Sci. Rep. 7, 43634 (2017).

    ADS  Google Scholar 

  35. Hébert-Dufresne, L. & Althouse, B. M. Complex dynamics of synergistic coinfections on realistically clustered networks. Proc. Natl Acad. Sci. USA 112, 10551–10556 (2015).

    ADS  MathSciNet  MATH  Google Scholar 

  36. Morens, D. M., Taubenberger, J. K. & Fauci, A. S. Predominant role of bacterial pneumonia as a cause of death in pandemic influenza: implications for pandemic influenza preparedness. J. Infect. Dis. 198, 962–970 (2008).

    Google Scholar 

  37. Althouse, B. et al. Identifying transmission routes of Streptococcus pneumoniae and sources of acquisitions in high transmission communities. Epidemiol. Infect. 145, 2750–2758 (2017).

    Google Scholar 

  38. Nickbakhsh, S. et al. Virus–virus interactions impact the population dynamics of influenza and the common cold. Proc. Natl Acad. Sci. USA 116, 27142–27150 (2019).

    Google Scholar 

  39. Mair, C. et al. Estimation of temporal covariances in pathogen dynamics using Bayesian multivariate autoregressive models. PLoS Comput. Biol. 15, e1007492 (2019).

    Google Scholar 

  40. Strathdee, S. A. & Stockman, J. K. Epidemiology of HIV among injecting and noninjecting drug users: current trends and implications for interventions. Curr. HIV/AIDS Rep. 7, 99–106 (2010).

    Google Scholar 

  41. Volz, E., Frost, S. D., Rothenberg, R. & Meyers, L. A. Epidemiological bridging by injection drug use drives an early HIV epidemic. Epidemics 2, 155–164 (2010).

    Google Scholar 

  42. Allard, A., Althouse, B. M., Scarpino, S. V. & Hébert-Dufresne, L. Asymmetric percolation drives a double transition in sexual contact networks. Proc. Natl Acad. Sci. USA 114, 8969–8973 (2017).

    MathSciNet  MATH  Google Scholar 

  43. Wearing, H. J., Rohani, P. & Keeling, M. J. Appropriate models for the management of infectious diseases. PLoS Med. 2, e174 (2005).

    Google Scholar 

  44. Shrestha, S. et al. Identifying the interaction between influenza and pneumococcal pneumonia using incidence data. Sci. Transl. Med. 5, 191ra84–191ra84 (2013).

    Google Scholar 

  45. Liu, Q.-H. et al. Measurability of the epidemic reproduction number in data-driven contact networks. Proc. Natl Acad. Sci. USA 115, 12680–12685 (2018).

    Google Scholar 

  46. Lorenz-Spreen, P., Mønsted, B. M., Hövel, P. & Lehmann, S. Accelerating dynamics of collective attention. Nat. Commun. 10, 1759 (2019).

    ADS  Google Scholar 

  47. Halstead, S. Antibody-enhanced dengue virus infection in primate leukocytes. Nature 265, 739 (1977).

    ADS  Google Scholar 

  48. Halstead, S. B. Neutralization and antibody-dependent enhancement of dengue viruses. Adv. Virus Res. 60, 421–467 (2003).

    Google Scholar 

  49. Hill, A. L., Rand, D. G., Nowak, M. A. & Christakis, N. A. Emotions as infectious diseases in a large social network: the SISa model. Proc. R. Soc. B 277, 3827–3835 (2010).

    Google Scholar 

  50. Janssen, H.-K., Müller, M. & Stenull, O. Generalized epidemic process and tricritical dynamic percolation. Phys. Rev. E 70, 026114 (2004).

    ADS  MathSciNet  Google Scholar 

  51. Carpenter, B. et al. Stan: A probabilistic programming language. J. Stat. Softw. https://doi.org/10.18637/jss.v076.i01 (2017).

  52. Yang, J. & Leskovec, J. Patterns of temporal variation in online media. In Proc. 4th ACM International Conference on Web Search and Data Mining (eds King, I. & Li, H.) 177–186 (ACM, 2011).

  53. Dengue Forecasting Project (NOAA, accessed 10 March 2019); https://dengueforecasting.noaa.gov/

Download references

Acknowledgements

L.H.-D. acknowledges support from the National Science Foundation grant DMS-1829826 and the National Institutes of Health 1P20 GM125498-01 Centers of Biomedical Research Excellence Award. S.V.S. acknowledges support from start-up funds provided by Northeastern University. J.-G.Y. is supported by a James S. McDonnell Postdoctoral Fellowship. We also thank A. Allard, B. M. Althouse, M. Newman, G. Cantwell and A. Kirkley for insightful discussions as well as J. Burkardt for sharing his Bernstein polynomial implementation.

Author information

Authors and Affiliations

Authors

Contributions

L.H.-D. conceived the study and conducted the simulations. J.-G.Y. designed and implemented the inference procedure. L.H.-D. and J.-G.Y. performed the calculations. S.V.S. compiled the empirical data. All authors interpreted the results and wrote the manuscript.

Corresponding author

Correspondence to Laurent Hébert-Dufresne.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Physics thanks Nicholas Christakis and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–9, details and benchmarks for the inference procedure and numerical simulations, and additional computational tests of the results.

Source data

Source Data Fig. 1

Computational Source Data.

Source Data Fig. 2

Statistical Source Data.

Source Data Fig. 3

Statistical and computational Source Data.

Source Data Fig. 4

Statistical Source Data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hébert-Dufresne, L., Scarpino, S.V. & Young, JG. Macroscopic patterns of interacting contagions are indistinguishable from social reinforcement. Nat. Phys. 16, 426–431 (2020). https://doi.org/10.1038/s41567-020-0791-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-020-0791-2

This article is cited by

Search

Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics