[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

RhoJ: an emerging biomarker and target in cancer research and treatment

Abstract

RhoJ is a Rho GTPase that belongs to the Cdc42 subfamily and has a molecular weight of approximately 21 kDa. It can activate the p21-activated kinase family either directly or indirectly, influencing the activity of various downstream effectors and playing a role in regulating the cytoskeleton, cell movement, and cell cycle. RhoJ’s expression and activity are controlled by multiple upstream factors at different levels, including expression, subcellular localization, and activation. High RhoJ expression is generally associated with a poor prognosis for cancer patients and is mainly due to an increased number of tumor blood vessels and abnormal expression in malignant cells. RhoJ promotes tumor progression through several pathways, particularly in tumor angiogenesis and drug resistance. Clinical data also indicates that high RhoJ expression is closely linked to the pathological features of tumor malignancy. There are various cancer treatment methods that target RhoJ signaling, such as direct binding to inhibit the RhoJ effector pocket, inhibiting RhoJ expression, blocking RhoJ upstream and downstream signals, and indirectly inhibiting RhoJ’s effect. RhoJ is an emerging cancer biomarker and a significant target for future cancer clinical research and drug development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structural features of RhoJ.
Fig. 2: Molecular mechanisms of RhoJ signaling.
Fig. 3: RhoJ signaling in tumor progression and targeted therapy.
Fig. 4: RhoJ expression significance in pan-cancer.

Similar content being viewed by others

References

  1. Vignal E, De Toledo M, Comunale F, Ladopoulou A, Gauthier-Rouviere C, Blangy A, et al. Characterization of TCL, a new GTPase of the rho family related to TC10 andCcdc42. J Biol Chem. 2000;275:36457–64.

    Article  CAS  PubMed  Google Scholar 

  2. Uemura A, Fukushima Y. Rho GTPases in Retinal Vascular Diseases. Int J Mol Sci. 2021;22:3684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Heasman SJ, Ridley AJ. Mammalian Rho GTPases: new insights into their functions from in vivo studies. Nat Rev Mol Cell Biol. 2008;9:690–701.

    Article  CAS  PubMed  Google Scholar 

  4. Mosaddeghzadeh N, Ahmadian MR. The RHO family GTPases: mechanisms of regulation and signaling. Cells. 2021;10:1831.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cervantes-Villagrana RD, Color-Aparicio VM, Reyes-Cruz G, Vazquez-Prado J. Protumoral bone marrow-derived cells migrate via Gbetagamma-dependent signaling pathways and exhibit a complex repertoire of RhoGEFs. J Cell Commun Signal. 2019;13:179–91.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Takase H, Matsumoto K, Yamadera R, Kubota Y, Otsu A, Suzuki R, et al. Genome-wide identification of endothelial cell-enriched genes in the mouse embryo. Blood. 2012;120:914–23.

    Article  CAS  PubMed  Google Scholar 

  7. Eelen G, Dubois C, Cantelmo AR, Goveia J, Bruning U, DeRan M, et al. Role of glutamine synthetase in angiogenesis beyond glutamine synthesis. Nature. 2018;561:63–69.

    Article  CAS  PubMed  Google Scholar 

  8. Valdembri D, Serini G. Angiogenesis: the Importance of RHOJ-mediated trafficking of active integrins. Curr Biol. 2020;30:R652–4.

    Article  CAS  PubMed  Google Scholar 

  9. Kim C, Yang H, Fukushima Y, Saw PE, Lee J, Park JS, et al. Vascular RhoJ is an effective and selective target for tumor angiogenesis and vascular disruption. Cancer Cell. 2014;25:102–17.

    Article  CAS  PubMed  Google Scholar 

  10. Wang M, Zhang C, Zheng Q, Ma Z, Qi M, Di G, et al. RhoJ facilitates angiogenesis in glioblastoma via JNK/VEGFR2 mediated activation of PAK and ERK signaling pathways. Int J Biol Sci. 2022;18:942–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ruiz R, Jahid S, Harris M, Marzese DM, Espitia F, Vasudeva P, et al. The RhoJ-BAD signaling network: An Achilles’ heel for BRAF mutant melanomas. PLoS Genet. 2017;13:e1006913.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Wang M, Jiang X, Yang Y, Chen H, Zhang C, Xu H, et al. Rhoj Is a novel target for progression and invasion of glioblastoma by impairing cytoskeleton dynamics. Neurotherapeutics. 2020;17:2028–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chen B, Yuan Y, Sun L, Chen J, Yang M, Yin Y, et al. MKL1 mediates TGF-beta induced RhoJ transcription to promote breast cancer cell migration and invasion. Front Cell Dev Biol. 2020;8:832.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Debaugnies M, Rodriguez-Acebes S, Blondeau J, Parent MA, Zocco M, Song Y, et al. RHOJ controls EMT-associated resistance to chemotherapy. Nature. 2023;616:168–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jahid S, Ortega JA, Vuong LM, Acquistapace IM, Hachey SJ, Flesher JL, et al. Structure-based design of CDC42 effector interaction inhibitors for the treatment of cancer. Cell Rep. 2022;39:110641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wennerberg K, Rossman KL, Der CJ. The Ras superfamily at a glance. J Cell Sci. 2005;118:843–6.

    Article  CAS  PubMed  Google Scholar 

  17. Letunic I, Bork P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021;49:W293–6.

    Article  CAS  PubMed Central  Google Scholar 

  18. Ackermann KL, Florke RR, Reyes SS, Tader BR, Hamann MJ. TCL/RhoJ plasma membrane localization and nucleotide exchange is coordinately regulated by amino acids within the N terminus and a distal loop region. J Biol Chem. 2016;291:23604–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Florke RR, Young GT, Hamann MJ. Unraveling a model of TCL/RhoJ allosterism using TC10 reverse chimeras. Small GTPases. 2020;11:138–45.

    Article  PubMed  Google Scholar 

  20. Qadir MI, Parveen A, Ali M. Cdc42: role in cancer management. Chem Biol Drug Des. 2015;86:432–9.

    Article  CAS  PubMed  Google Scholar 

  21. Murphy GA, Solski PA, Jillian SA, Perez de la Ossa P, D’Eustachio P, Der CJ, et al. Cellular functions of TC10, a Rho family GTPase: regulation of morphology, signal transduction and cell growth. Oncogene. 1999;18:3831–45.

    Article  CAS  PubMed  Google Scholar 

  22. Tong S, Liss AS, You M, Bose HR Jr. The activation of TC10, a Rho small GTPase, contributes to v-Rel-mediated transformation. Oncogene. 2007;26:2318–29.

    Article  CAS  PubMed  Google Scholar 

  23. Satoh K, Sakai S, Nishizuka M. Knockdown of RhoQ, a member of Rho GTPase, accelerates TGF-beta-induced EMT in human lung adenocarcinoma. Biochem Biophys Rep. 2022;32:101346.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Bridges E, Sheldon H, Kleibeuker E, Ramberger E, Zois C, Barnard A, et al. RHOQ is induced by DLL4 and regulates angiogenesis by determining the intracellular route of the Notch intracellular domain. Angiogenesis. 2020;23:493–513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Farhan H, Hsu VW. Cdc42 and cellular polarity: emerging roles at the golgi. Trends Cell Biol. 2016;26:241–8.

    Article  CAS  PubMed  Google Scholar 

  26. Cerione RA. Cdc42: new roads to travel. Trends Cell Biol. 2004;14:127–32.

    Article  CAS  PubMed  Google Scholar 

  27. Sundararaman A, Fukushima Y, Norman JC, Uemura A, Mellor H. RhoJ regulates alpha5beta1 integrin trafficking to control fibronectin remodeling during angiogenesis. Curr Biol. 2020;30:2146–55.e5.

    Article  CAS  PubMed  Google Scholar 

  28. Fukushima Y, Okada M, Kataoka H, Hirashima M, Yoshida Y, Mann F, et al. Sema3E-PlexinD1 signaling selectively suppresses disoriented angiogenesis in ischemic retinopathy in mice. J Clin Invest. 2011;121:1974–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kusuhara S, Fukushima Y, Fukuhara S, Jakt LM, Okada M, Shimizu Y, et al. Arhgef15 promotes retinal angiogenesis by mediating VEGF-induced Cdc42 activation and potentiating RhoJ inactivation in endothelial cells. PLoS ONE. 2012;7:e45858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wu A, Jiang X. p21-Activated kinases as promising therapeutic targets in hematological malignancies. Leukemia. 2022;36:315–26.

    Article  CAS  PubMed  Google Scholar 

  31. Ho H, Aruri J, Kapadia R, Mehr H, White MA, Ganesan AK. RhoJ regulates melanoma chemoresistance by suppressing pathways that sense DNA damage. Cancer Res. 2012;72:5516–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ho H, Soto Hopkin A, Kapadia R, Vasudeva P, Schilling J, Ganesan AK. RhoJ modulates melanoma invasion by altering actin cytoskeletal dynamics. Pigment Cell Melanoma Res. 2013;26:218–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fukushima Y, Nishiyama K, Kataoka H, Fruttiger M, Fukuhara S, Nishida K, et al. RhoJ integrates attractive and repulsive cues in directional migration of endothelial cells. EMBO J. 2020;39:e102930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kichina JV, Goc A, Al-Husein B, Somanath PR, Kandel ES. PAK1 as a therapeutic target. Expert Opin Ther Targets. 2010;14:703–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gautreau AM, Fregoso FE, Simanov G, Dominguez R. Nucleation, stabilization, and disassembly of branched actin networks. Trends Cell Biol. 2022;32:421–32.

    Article  CAS  PubMed  Google Scholar 

  36. Shen J, Wang Q, Mao Y, Gao W, Duan S. Targeting the p53 signaling pathway in cancers: molecular mechanisms and clinical studies. MedComm (2020). 2023;4:e288.

    Article  CAS  PubMed  Google Scholar 

  37. Wang H, Guo M, Wei H, Chen Y. Targeting p53 pathways: mechanisms, structures, and advances in therapy. Signal Transduct Target Ther. 2023;8:92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Goldstein NB, Steel A, Barbulescu CC, Koster MI, Wright MJ, Jones KL, et al. Melanocyte precursors in the hair follicle bulge of repigmented vitiligo skin are controlled by RHO-GTPase, KCTD10, and CTNNB1 signaling. J Invest Dermatol. 2021;141:638–47.e13.

    Article  CAS  PubMed  Google Scholar 

  39. Magne N, Rousseau V, Duarte K, Poea-Guyon S, Gleize V, Mutel A, et al. PAK3 is a key signature gene of the glioma proneural subtype and affects its proliferation, differentiation and growth. Cell Oncol (Dordr). 2021;44:1257–71.

    Article  CAS  PubMed  Google Scholar 

  40. Rane CK, Minden A. P21 activated kinase signaling in cancer. Semin Cancer Biol. 2019;54:40–49.

    Article  CAS  PubMed  Google Scholar 

  41. Ginsberg MH. Integrin activation. BMB Rep. 2014;47:655–9.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kuwar R, Wen X, Zhang N, Sun D. Integrin binding peptides facilitate growth and interconnected vascular-like network formation of rat primary cortical vascular endothelial cells in vitro. Neural Regen Res. 2023;18:1052–6.

    Article  CAS  PubMed  Google Scholar 

  43. Mas-Moruno C, Fraioli R, Rechenmacher F, Neubauer S, Kapp TG, Kessler H. alphavbeta3- or alpha5beta1-integrin-selective peptidomimetics for surface coating. Angew Chem Int Ed Engl. 2016;55:7048–67.

    Article  CAS  PubMed  Google Scholar 

  44. Yuan L, Sacharidou A, Stratman AN, Le Bras A, Zwiers PJ, Spokes K, et al. RhoJ is an endothelial cell-restricted Rho GTPase that mediates vascular morphogenesis and is regulated by the transcription factor ERG. Blood. 2011;118:1145–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bailly C, Beignet J, Loirand G, Sauzeau V. Rac1 as a therapeutic anticancer target: Promises and limitations. Biochem Pharm. 2022;203:115180.

    Article  CAS  PubMed  Google Scholar 

  46. Bravo-Cordero JJ, Magalhaes MA, Eddy RJ, Hodgson L, Condeelis J. Functions of cofilin in cell locomotion and invasion. Nat Rev Mol Cell Biol. 2013;14:405–15.

    Article  CAS  PubMed  Google Scholar 

  47. Alhadidi Q, Bin Sayeed MS, Shah ZA. Cofilin as a promising therapeutic target for ischemic and hemorrhagic stroke. Transl Stroke Res. 2016;7:33–41.

    Article  CAS  PubMed  Google Scholar 

  48. Bagci H, Sriskandarajah N, Robert A, Boulais J, Elkholi IE, Tran V, et al. Mapping the proximity interaction network of the Rho-family GTPases reveals signalling pathways and regulatory mechanisms. Nat Cell Biol. 2020;22:120–34.

    Article  CAS  PubMed  Google Scholar 

  49. Rossman KL, Der CJ, Sondek J. GEF means go: turning on RHO GTPases with guanine nucleotide-exchange factors. Nat Rev Mol Cell Biol. 2005;6:167–80.

    Article  CAS  PubMed  Google Scholar 

  50. Tcherkezian J, Lamarche-Vane N. Current knowledge of the large RhoGAP family of proteins. Biol Cell. 2007;99:67–86.

    Article  CAS  PubMed  Google Scholar 

  51. Kreider-Letterman G, Carr NM, Garcia-Mata R. Fixing the GAP: The role of RhoGAPs in cancer. Eur J Cell Biol. 2022;101:151209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Fukuhara S, Chikumi H, Gutkind JS. RGS-containing RhoGEFs: the missing link between transforming G proteins and Rho? Oncogene. 2001;20:1661–8.

    Article  CAS  PubMed  Google Scholar 

  53. Medina F, Carter AM, Dada O, Gutowski S, Hadas J, Chen Z, et al. Activated RhoA is a positive feedback regulator of the Lbc family of Rho guanine nucleotide exchange factor proteins. J Biol Chem. 2013;288:11325–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lin B, Luo J, Lehmann R. An AMPK phosphoregulated RhoGEF feedback loop tunes cortical flow-driven amoeboid migration in vivo. Sci Adv. 2022;8:eabo0323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yang H, Zhang H, Yang Y, Wang X, Deng T, Liu R, et al. Hypoxia induced exosomal circRNA promotes metastasis of colorectal cancer via targeting gef-h1/rhoa axis. theranostics. 2020;10:8211–26.

  56. Birkenfeld J, Nalbant P, Bohl BP, Pertz O, Hahn KM, Bokoch GM. GEF-H1 modulates localized RhoA activation during cytokinesis under the control of mitotic kinases. Dev Cell. 2007;12:699–712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Grubisha MJ, DeGiosio RA, Wills ZP, Sweet RA. Trio and Kalirin as unique enactors of Rho/Rac spatiotemporal precision. Cell Signal. 2022;98:110416.

    Article  CAS  PubMed  Google Scholar 

  58. Backer S, Lokmane L, Landragin C, Deck M, Garel S, Bloch-Gallego E. Trio GEF mediates RhoA activation downstream of Slit2 and coordinates telencephalic wiring. Development. 2018;145:dev153692.

    Article  PubMed  Google Scholar 

  59. Liu J, Wada Y, Katsura M, Tozawa H, Erwin N, Kapron CM, et al. Rho-associated coiled-coil kinase (ROCK) in molecular regulation of angiogenesis. Theranostics. 2018;8:6053–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kaur S, Leszczynska K, Abraham S, Scarcia M, Hiltbrunner S, Marshall CJ, et al. RhoJ/TCL regulates endothelial motility and tube formation and modulates actomyosin contractility and focal adhesion numbers. Arterioscler Thromb Vasc Biol. 2011;31:657–64.

    Article  CAS  PubMed  Google Scholar 

  61. Sundararaman A, Mellor H. A functional antagonism between RhoJ and Cdc42 regulates fibronectin remodelling during angiogenesis. Small GTPases. 2021;12:241–5.

    Article  CAS  PubMed  Google Scholar 

  62. Fujita A, Koinuma S, Yasuda S, Nagai H, Kamiguchi H, Wada N, et al. GTP hydrolysis of TC10 promotes neurite outgrowth through exocytic fusion of Rab11- and L1-containing vesicles by releasing exocyst component Exo70. PLoS ONE. 2013;8:e79689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Haga RB, Ridley AJ. Rho GTPases: regulation and roles in cancer cell biology. Small GTPases. 2016;7:207–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Singh BN, Sierra-Pagan JE, Gong W, Das S, Theisen JWM, Skie E, et al. ETV2 (Ets Variant Transcription Factor 2)-Rhoj cascade regulates endothelial progenitor cell migration during embryogenesis. Arterioscler Thromb Vasc Biol. 2020;40:2875–90.

    Article  CAS  PubMed  Google Scholar 

  65. Zhang Z, Chen B, Zhu Y, Zhang T, Zhang X, Yuan Y, et al. The Jumonji domain-containing histone demethylase homolog 1D/lysine demethylase 7A (JHDM1D/KDM7A) is an epigenetic activator of RHOJ transcription in breast cancer cells. Front Cell Dev Biol. 2021;9:664375.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Gugnoni M, Manzotti G, Vitale E, Sauta E, Torricelli F, Reggiani F, et al. OVOL2 impairs RHO GTPase signaling to restrain mitosis and aggressiveness of anaplastic thyroid cancer. J Exp Clin Cancer Res. 2022;41:108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Boulias K, Greer EL. Biological roles of adenine methylation in RNA. Nat Rev Genet. 2023;24:143–60.

    Article  CAS  PubMed  Google Scholar 

  68. Liu Y, Yang D, Liu T, Chen J, Yu J, Yi P. N6-methyladenosine-mediated gene regulation and therapeutic implications. Trends Mol Med. 2023;29:454–67.

    Article  CAS  PubMed  Google Scholar 

  69. Li X, Peng X, Zhang C, Bai X, Li Y, Chen G, et al. Bladder cancer-derived small extracellular vesicles promote tumor angiogenesis by inducing HBP-related metabolic reprogramming and SerRS O-GlcNAcylation in endothelial cells. Adv Sci (Weinh). 2022;9:e2202993.

    Article  PubMed  Google Scholar 

  70. Castegna A, Menga A. Glutamine synthetase: localization dictates outcome. Genes (Basel). 2018;9:108.

    Article  PubMed  Google Scholar 

  71. Zhang Z, Li X, Yang F, Chen C, Liu P, Ren Y, et al. DHHC9-mediated GLUT1 S-palmitoylation promotes glioblastoma glycolysis and tumorigenesis. Nat Commun. 2021;12:5872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Pechstein A, Shupliakov O, Haucke V. Intersectin 1: a versatile actor in the synaptic vesicle cycle. Biochem Soc Trans. 2010;38:181–6.

    Article  CAS  PubMed  Google Scholar 

  73. Color-Aparicio VM, Cervantes-Villagrana RD, Garcia-Jimenez I, Beltran-Navarro YM, Castillo-Kauil A, Escobar-Islas E, et al. Endothelial cell sprouting driven by RhoJ directly activated by a membrane-anchored Intersectin 1 (ITSN1) RhoGEF module. Biochem Biophys Res Commun. 2020;524:109–16.

    Article  CAS  PubMed  Google Scholar 

  74. Xiao XH, Lv LC, Duan J, Wu YM, He SJ, Hu ZZ, et al. Regulating Cdc42 and its signaling pathways in cancer: small molecules and MicroRNA as new treatment candidates. Molecules. 2018;23:787.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Friesland A, Zhao Y, Chen YH, Wang L, Zhou H, Lu Q. Small molecule targeting Cdc42-intersectin interaction disrupts Golgi organization and suppresses cell motility. Proc Natl Acad Sci USA. 2013;110:1261–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Huang Y, Liao J, Vlashi R, Chen G. Focal adhesion kinase (FAK): its structure, characteristics, and signaling in skeletal system. Cell Signal. 2023;111:110852.

    Article  CAS  PubMed  Google Scholar 

  77. Dent LG, Poon CL, Zhang X, Degoutin JL, Tipping M, Veraksa A, et al. The GTPase regulatory proteins Pix and Git control tissue growth via the Hippo pathway. Curr Biol. 2015;25:124–30.

    Article  CAS  PubMed  Google Scholar 

  78. Wilson E, Leszczynska K, Poulter NS, Edelmann F, Salisbury VA, Noy PJ, et al. RhoJ interacts with the GIT-PIX complex and regulates focal adhesion disassembly. J Cell Sci. 2014;127:3039–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Rezzola S, Di Somma M, Corsini M, Leali D, Ravelli C, Polli VAB, et al. VEGFR2 activation mediates the pro-angiogenic activity of BMP4. Angiogenesis. 2019;22:521–33.

    Article  CAS  PubMed  Google Scholar 

  80. Zhou HJ, Xu Z, Wang Z, Zhang H, Zhuang ZW, Simons M, et al. Author Correction: SUMOylation of VEGFR2 regulates its intracellular trafficking and pathological angiogenesis. Nat Commun. 2019;10:3679.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Tamagnone L, Rehman M. To die or not to die: Sema3E rules the game. Cancer Cell. 2013;24:564–6.

    Article  CAS  PubMed  Google Scholar 

  82. Bhattacharya M, Babwah AV, Ferguson SS. Small GTP-binding protein-coupled receptors. Biochem Soc Trans. 2004;32:1040–4.

    Article  CAS  PubMed  Google Scholar 

  83. Whitehead IP, Zohn IE, Der CJ. Rho GTPase-dependent transformation by G protein-coupled receptors. Oncogene. 2001;20:1547–55.

    Article  CAS  PubMed  Google Scholar 

  84. Siehler S. Regulation of RhoGEF proteins by G12/13-coupled receptors. Br J Pharm. 2009;158:41–9.

    Article  CAS  Google Scholar 

  85. Castillo-Kauil A, García-Jiménez I, Cervantes-Villagrana RD, Adame-García SR, Beltrán-Navarro YM, Gutkind JS, et al. Gα(s) directly drives PDZ-RhoGEF signaling to Cdc42. J Biol Chem. 2020;295:16920–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Cervantes-Villagrana RD, Color-Aparicio VM, Castillo-Kauil A, García-Jiménez I, Beltrán-Navarro YM, Reyes-Cruz G, et al. Oncogenic Gαq activates RhoJ through PDZ-RhoGEF. Int J Mol Sci. 2023;24:15734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kim C, Yang H, Park I, Chon HJ, Kim JH, Kwon WS, et al. Rho GTPase RhoJ is associated with gastric cancer progression and metastasis. J Cancer. 2016;7:1550–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wang S, Wang Q, Fan B, Gong J, Sun L, Hu B, et al. Machine learning-based screening of the diagnostic genes and their relationship with immune-cell infiltration in patients with lung adenocarcinoma. J Thorac Dis. 2022;14:699–711.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Bai Y, Wei C, Zhong Y, Zhang Y, Long J, Huang S, et al. Development and validation of a prognostic nomogram for gastric cancer based on DNA methylation-driven differentially expressed genes. Int J Biol Sci. 2020;16:1153–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Herbert SP, Stainier DY. Molecular control of endothelial cell behaviour during blood vessel morphogenesis. Nat Rev Mol Cell Biol. 2011;12:551–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Lu XJ, Lai HF, Wu SC, Chen CL, Chiu YL. Elucidating the associated biological function and clinical significance of RHOJ expression in urothelial carcinoma. Int J Mol Sci. 2023;24:14081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Eddy K, Chen S. Overcoming immune evasion in melanoma. Int J Mol Sci. 2020;21:8984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Pingault V, Zerad L, Bertani-Torres W, Bondurand N. SOX10: 20 years of phenotypic plurality and current understanding of its developmental function. J Med Genet. 2022;59:105–14.

    Article  CAS  PubMed  Google Scholar 

  94. Delattre JF, Selcen Oguz Erdogan A, Cohen R, Shi Q, Emile JF, Taieb J, et al. A comprehensive overview of tumour deposits in colorectal cancer: Towards a next TNM classification. Cancer Treat Rev. 2022;103:102325.

    Article  PubMed  Google Scholar 

  95. Liu S, Ren J, Zhang L. Ras homolog family member J (RHOJ): a key regulator of chemoresistance associated with epithelial-mesenchymal transition. Signal Transduct Target Ther. 2023;8:376.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Cybulla E, Vindigni A. Leveraging the replication stress response to optimize cancer therapy. Nat Rev Cancer. 2023;23:6–24.

    Article  CAS  PubMed  Google Scholar 

  97. da Costa A, Chowdhury D, Shapiro GI, D’Andrea AD, Konstantinopoulos PA. Targeting replication stress in cancer therapy. Nat Rev Drug Discov. 2023;22:38–58.

    Article  PubMed  Google Scholar 

  98. Mills J, Hricik T, Siddiqi S, Matushansky I. Chromatin structure predicts epigenetic therapy responsiveness in sarcoma. Mol Cancer Ther. 2011;10:313–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Brueckner B, Lyko F. DNA methyltransferase inhibitors: old and new drugs for an epigenetic cancer therapy. Trends Pharm Sci. 2004;25:551–4.

    Article  CAS  PubMed  Google Scholar 

  100. Huang Y, Azgari C, Yin M, Chiou YY, Lindsey-Boltz LA, Sancar A, et al. Effects of replication domains on genome-wide UV-induced DNA damage and repair. PLoS Genet. 2022;18:e1010426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Brindani N, Vuong LM, Acquistapace IM, La Serra MA, Ortega JA, Veronesi M, et al. Design, synthesis, in vitro and in vivo characterization of CDC42 GTPase interaction inhibitors for the treatment of cancer. J Med Chem. 2023;66:5981–6001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Liu W, Du W, Shang X, Wang L, Evelyn C, Florian MC, et al. Rational identification of a Cdc42 inhibitor presents a new regimen for long-term hematopoietic stem cell mobilization. Leukemia. 2019;33:749–61.

    Article  CAS  PubMed  Google Scholar 

  103. Cruz-Collazo A, Ruiz-Calderon JF, Picon H, Borrero-Garcia LD, Lopez I, Castillo-Pichardo L, et al. Efficacy of Rac and Cdc42 inhibitor MBQ-167 in triple-negative breast cancer. Mol Cancer Ther. 2021;20:2420–32.

    Article  CAS  PubMed  Google Scholar 

  104. Murphy NP, Mott HR, Owen D. Progress in the therapeutic inhibition of Cdc42 signalling. Biochem Soc Trans. 2021;49:1443–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Kostelnik TI, Orvig C. Radioactive main group and rare earth metals for imaging and therapy. Chem Rev. 2019;119:902–56.

    Article  CAS  PubMed  Google Scholar 

  106. Shi P, Huang Z. Proteomic detection of changes in protein synthesis induced by lanthanum in BGC-823 human gastric cancer cells. Biometals. 2005;18:89–95.

    Article  CAS  PubMed  Google Scholar 

  107. Li Z, Di C, Li S, Yang X, Nie G. Smart nanotherapeutic targeting of tumor vasculature. Acc Chem Res. 2019;52:2703–12.

    Article  CAS  PubMed  Google Scholar 

  108. Buckley AM, Lynam-Lennon N, O’Neill H, O’Sullivan J. Targeting hallmarks of cancer to enhance radiosensitivity in gastrointestinal cancers. Nat Rev Gastroenterol Hepatol. 2020;17:298–313.

    Article  CAS  PubMed  Google Scholar 

  109. Petroni G, Cantley LC, Santambrogio L, Formenti SC, Galluzzi L. Radiotherapy as a tool to elicit clinically actionable signalling pathways in cancer. Nat Rev Clin Oncol. 2022;19:114–31.

    Article  CAS  PubMed  Google Scholar 

  110. Sriramulu S, Thoidingjam S, Brown SL, Siddiqui F, Movsas B, Nyati S. Molecular targets that sensitize cancer to radiation killing: From the bench to the bedside. Biomed Pharmacother. 2023;158:114126.

    Article  CAS  PubMed  Google Scholar 

  111. Liu S, Li H, Xia L, Xu P, Ding Y, Huo D, et al. Anti-RhoJ antibody functionalized Au@I nanoparticles as CT-guided tumor vessel-targeting radiosensitizers in patient-derived tumor xenograft model. Biomaterials. 2017;141:1–12.

    Article  PubMed  Google Scholar 

  112. Ma Z, Sun Q, Zhang C, Zheng Q, Liu Y, Xu H, et al. RHOJ induces epithelial-to-mesenchymal transition by IL-6/STAT3 to promote invasion and metastasis in gastric cancer. Int J Biol Sci. 2023;19:4411–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596:583–9.

    Article  CAS  PubMed Central  Google Scholar 

  114. Pettersen EF, Goddard TD, Huang CC, Meng EC, Couch GS, Croll TI, et al. UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein Sci. 2021;30:70–82.

    Article  CAS  PubMed  Google Scholar 

  115. Armstrong DR, Berrisford JM, Conroy MJ, Gutmanas A, Anyango S, Choudhary P, et al. PDBe: improved findability of macromolecular structure data in the PDB. Nucleic Acids Res. 2020;48:D335–43.

    CAS  PubMed  Google Scholar 

  116. UniProt C. UniProt: the Universal Protein Knowledgebase in 2023. Nucleic Acids Res. 2023;51:D523–31.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank PubMed and NCBI databases for the valuable information. Figures 2 and 3 were created by BioRender (biorender.com).

Funding

This study was supported by the Qiantang Scholars Fund in Hangzhou City University (No. 210000-581835), Ningbo Health Branding Subject Fund (PPXK2018-04), Ningbo Top Medical and Health Research Program (2022020304), and Ningbo Key research and development projects (2022Z125).

Author information

Authors and Affiliations

Authors

Contributions

Jinze Shen: Conceptualization, Writing - Original Draft, Visualization; Xinming Su: Writing - Original Draft; Shana Wang: Visualization; Zehua Wang: Visualization; Chenming Zhong: Visualization; Yi Huang: Writing - Review & Editing, Funding acquisition; Shiwei Duan: Conceptualization, Writing - Review & Editing, Funding acquisition.

Corresponding authors

Correspondence to Yi Huang or Shiwei Duan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, J., Su, X., Wang, S. et al. RhoJ: an emerging biomarker and target in cancer research and treatment. Cancer Gene Ther 31, 1454–1464 (2024). https://doi.org/10.1038/s41417-024-00792-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-024-00792-6

Search

Quick links